2022 Light Commercial Products

Deck 2 of 2

EcoBlue VAF Motor Setup & Troubleshooting

FAN SET UP

DIFFERENT CHARTS PER MODEL

Vpc Calculator		ESP in. wg											Factory Setting:		
_			0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0		7.8 VDC	
UNIT MODEL NUMBER		1500	5.4	6.2	6.9	7.5	8.1	8.6	9.1	9.6				Field Setting:	
		1625	5.8	6.5	7.1	7.7	8.3	8.8	9.3	9.8				i ioid oottiiigi	
		1750	6.1	6.8	7.4	8.0	8.5	9.0	9.5	9.9					
		1875	6.5	7.1	7.7	8.2	8.7	9.2	9.7				L –	Vdc	
	N	2000	6.8	7.4	7.9	8.5	9.0	9.5	9.9						
	5	2125	7.2	7.7	8.2	8.7	9.2	9.7						Switch Range:	
		2250	7.6	8.0	8.5	9.0	9.5	10.0						A B C	
		2375	7.9	8.4	8.8	9.3	9.8						A	4.1 - 7.5	
		2500	8.3	8.7	9.2	9.6							В	6.9 - 8.7	
Fiel	Field Accessories:						С	7.7 - 10.0							
	Economizer			0.1	0.1	0.1	0.1	0.1	0.1	0.1					
	1 Stage E Heat			0.1	0.2	0.2	0.2	0.2	0.2	0.2					
	2 Stage E Heat			0.2	0.2	0.2	0.3	0.3	0.3	0.3					

ADD to Voltage Selected From Above

CONFIRM MOTOR 10VDC SIGNAL

Should read ~10Vdc

- Prism IDF motors supply the 10Vdc source signal that is then adjusted by the "A-B-C" switches and potentiometer on the unit control board for user speed setting
- To confirm 10Vdc from motor, Set Voltmeter to Vdc and touch probes to bottom connection of User speed setting and top pin of IFM plug on the Unit control board
- This should read 10V

CONFIRM USER SPEED SETTING VDC

- Set Voltmeter to Vdc and touch probes across connections on User speed setting area of the unit control board
- This should read

CONFIRM BOARD OUTPUT VDC SIGNAL

information

- Set Voltmeter to Vdc and touch probes across connections on JP1 of the ٠ unit control board
- This Vdc reading should match per note below ٠
- NOTE: If you are only using 24V at G to command fan speed for testing, ٠ output at these pins will read the values below. This is because some units have a low cool/vent speed setting.
 - FC04-06: 100% of user Vdc setting _
 - FC07: 67% of user Vdc setting _
 - GC05-06: 75% of user Vdc setting _
 - To Confirm 100% fan speed matches user set point you can jump _ 24V to Y2

48FC07 WITH A 3-PHASE BLOWER MOTOR

CONFIRM MOTOR 10VDC SIGNAL

- VAF IDF motors supply the 10Vdc source signal that is then adjusted by the "A-B-C" switches and potentiometer on the unit control board for user speed setting
- To confirm 10Vdc from motor, Set Voltmeter to Vdc and touch probes to Shou bottom connection of User speed setting and top pin of IFM plug on the Unit control board
- This should read 10V

CE

CONFIRM USER SPEED SETTING VDC

 Set Voltmeter to Vdc and touch probes across connections on User speed setting area of the unit control board

Should read user setting between 4.1 Vdc-10Vd

This should read

CONFIRM BOARD OUTPUT VDC SIGNAL

- Set Voltmeter to Vdc and touch probes across connections on JP1 of the unit control board
- This Vdc reading should match per note below
- NOTE: If you are only using 24V at G to command fan speed for testing, output at these pins will read the values below. This is because some units have a low cool/vent speed setting.
 - FC04-06: 100% of user Vdc setting
 - FC07: 67% of user Vdc setting

CE

- GC05-06: 75% of user Vdc setting
- To Confirm 100% fan speed matches user set point you can jump 24V to Y2

VANE AXIAL SETUP

VANE AXIAL TROUBLESHOOTING

VANE AXIAL REMOVAL

VANE AXIAL DISASSEMBLY

Stage Air Volume - SAV

STAGED AIR VOLUME (SAV)

It's a marketing term for two speed blower.

- Utilizes either a VFD on belt driven motors
- X13 for direct drive

2-Speed Supply Air Blower / VFD or X-13 Used on two stage refrigerant systems (Y1 & Y2) with a Copeland UltraTech[™] Scroll or Larger Units with Two Compressors.

S. A. V. COMPONENTS

- Fan Speed Relay Board(FB)
- VFD with three phase blower motors or ECM motor on single phase Tap Select (X-13)

ASHRAE 90.1 2010 - CALIFORNIA TITLE 24

- During the first stage of cooling operation the VFD will adjust the fan motor to provide 67% of the total cfm established for the unit.
- When a call for the second stage of cooling is required, the VFD will allow the total cfm for the unit established (100%).

ASHRAE 90.1 2010 - CALIFORNIA TITLE 24

- During the heating mode the VFD will allow total design cfm (100%) operation
- During the ventilation mode the VFD will allow operation to 67% of total cfm.

ABB VFD OR TAP SELECT

- Installation, Setup & Troubleshooting Supplement
- Catalog No: VFD---07SI

CE

Keypad factory installed on LC's Only (not factory installed on other models)

Kit # CRDISKIT001A00

FAN SPEED RELAY BOARD

 Fan Speed Relay Board has relays that control the Two-Speed Supply Fan/VFD

Fig. 14 - Jumpers JW1 & JW2 Cut for Two-Speed Fan Board Configuration

24 VAC INPUTS TO THE FAN SPEED RELAY BOARD

24 VDC Outputs from Fan Speed Relay Board to VFD (ACS320)

24 VDC Outputs from Fan Speed Relay Board to VFD (ACS320)

24 VDC Outputs from Fan Speed Relay Board to VFD (ACH550)

Ventilation (Fan only) or Y1

Fig. 15 - Connection Schematic – Fan Speed Relay Board and VFD.

0

C12005 C12005

24 VDC Outputs from Fan Speed Relay Board to VFD (ACH550)

Y2 Second Stage Cooling

Fig. 15 - Connection Schematic – Fan Speed Relay Board and VFD.

RELAY FUNCTIONS

Table 10 – Two-Speed Configuration Logic (Thermostat Control)

INPUT	Re	elay C Status	oil	Controlling	Fan Motor	
	K1	K 2	КЗ	Curpur	Speed	
G	Off	Off	On	КЗ	Low (40 Hz)	
Y1	Off	Off	On	КЗ	Low (40 Hz)	
Y2	Off	On	On	K2	High (60 Hz)	
W1	On	On	On	K1	High (60 Hz)	

ĈE

Remember Jumpers JW1 & JW2 must be cut in order to achieve the above relay sequence.

WHY USE A VFD

- A two speed (two winding) blower motor would require the next size motor frame in order to achieve the same CFM. The VFD system can use the smaller standard motor frame.
- The manufacturing cost of a two-speed blower motor may be less than a VFD system but the long-term operating cost of the VFD is less for the customer.

VFD Control Inputs ACH550

ACH550 VERSUS ACS320 (FEATURES)

ACS320 Power Range:

- •Input 1Φ 240Vac, 0.25 3 HP
- •Input 3Φ 240Vac, 0.5 15 HP
- •Input 3Φ 480Vac, 0.5 30 HP
- Enclosure IP20 (Optional IP21 Kit)
- Motor Control Scalar (V/Hz)
- Output Frequency 0 500Hz
- Switching frequency 4/8/12/16 kHz
- I/O 2 AI, 1AO, 5 DI (1 PTI freq. input), 1 RO, 1 DO
- Fieldbus (built in communications) BACnet, JCI N2,
- Siemens FLN, Modbus RTU (LonWorks will require a gateway)

ACH550 Power Range:

- •1.0 to 100HP @ 240Vac
- •1.5 to 550HP @ 480Vac
- •2.0 to 150HP @ 600Vac
- Enclosure IP21 (Optional IP54 Kit)
- Motor Control Scalar (V/Hz) & Vector Mode
- Output Frequency 0 500Hz
- Switching frequency 1/4/8/12kHz
- I/O 2 AI, 1AO, 6 DI (1 PTI freq. input), 3 RO
 - Fieldbus (built in communications) BACnet, JCI N2,
 - Siemens FLN, Modbus RTU (Optional LonWorks)

ACH550 VERSUS ACS320 (TERMINALS)

CE

- RO Relay Output Difference (3RO vs 1 RO)
- DO Digital Output Difference (Zero DO vs 1 DO)
- NOTE: Terminal numbers are different

RTU LOCATION OF VFD

FAN COIL LOCATION OF VFD

C11532

DRIVE INPUT PROTECTION DEVICES

An input disconnect device must be installed between AC input power and the VFD

VFDs to be installed with input fuse protection.

Fast-acting fuses provide rapid protection compared to circuit breakers (limits collateral damage due to a: ground fault, output short, or DC Bus short)

TERMINALS

CFM ADJUSTMENT

Do not adjust VFD speed in order to adjust CFM!

To adjust CFM, you must adjust your blower assembly!

HANDS ON CHECKLIST

- VERIFY DRIVE NUMBER
- VERIFY MOTOR NUMBER
- LOCATE DRIVE AND MOTOR COMBO ON HANDOUT
- CHECK PARAMETERS
- CHANGE AS NEEDED

CONTROL PANEL FEATURES ACH550 AND ACS320

Alphanumeric control panel with backlit LCD display

- Easy monitoring four-line display
 - Three selectable actual values displayed simultaneously
- Supports
 - Start-up Assistant
 - Fault indications and history
 - Local / Remote control
- Removable: Connection with CAT5 cable
- Parameter upload/download (copy)
- Display with 16 languages
- Context sensitive Help key
- Real Time clock

CONTROL PANEL – BUTTON FUNCTIONS ACH550 AND ACS320

ĈE

CONTROL PANEL - ASSISTANTS (SAY NO) DO NOT USE

- Assistants simplify functions of Drive Operation . (Say no) Do not use
- Maintenance Assistant
 - Can be used to insert preventative maintenance functions using run time, motor revolutions or events
- Diagnostic Assistant
 - Activated with a fault and provides suggestions to correct fault based on the most common causes

CONTROL PANEL – PARAMETERS MODE

Parameters Mode

- Allows monitoring of signals in Groups 1,3 & 4 (Read-out Only)
- Allows monitoring & editing of any parameters in groups 10-99
- Provides the avenue to commission the drive
- Start/stop, change direction and change control locations between Hand & Auto

OFF CPAR GROUPS-99
99 START-UP DATA
01 OPERATING DATA
03 ACTUAL SIGNALS
04 FAULT HISTORY
10 START/STOP/DIR
EXIT 00:00 SEL

CONTROL PANEL – FAULT LOGGER MODE

• Fault Logger Mode

- View the drive fault history of a maximum of 10 faults (saves last 3 in memory after a power cycle)
- View the last 3 faults (saves details on last fault in memory after a power cycle)
- Provides help text for a given fault
- Reduces troubleshooting time

PARAMETERS ASSISTANTS CHANGED PAR EXIT 00:00 ENTER
LOC © FAULT LOG 10: PANEL LOSS 19.03.05 13:04:57 6: DC UNDERVOLT 6: AI1 LOSS EXIT 00:00 DETAIL
LOC & PANEL LOSS FAULT 10
FAULT TIME 1 13:04:57 FAULT TIME 2 EXIT 00:00 DIAG

CONTROL PANEL – CHANGED PARAMETERS MODE

Changed Parameters Mode

CE

- Provides the means to view parameters which have been changed with respect to default values for a given macro being utilized
- Very useful troubleshooting tool
- Allows user to edit changed parameters as well

OFF ℃CHANGED PAR
1202 CONST SPEED 1
1203 CONST SPEED 2
1204 CONST SPEED 3
1304 MINIMUM AI2
EXIT 00:00 EDIT

VFD SET-UP TABLES

The VFD must be off when programming parameters The VFD will not allow changes in the auto mode All Carrier units do not come with VFD keypads

	VFD Part Number	ABB Part Number	Description	Motor Part Number	Voltage (9905)	Nom Amps (9906)	Motor Nom Freq (9907)	Nom RPM (9908)	Nom HP (9909)	Const Speed Sel (1201)	Const Speed 1 (1202)	Const Speed 2 (1203)	Const Speed 3 (1204)	Relay Out 3 (1403)	Max Amps (2003)	Min Freq (2007)	Max Freq (2008)	Switch Freq (2606)	Start Fcn (2101)	Stop Fcn (2102)	Accel/ Decel (2201)	Accel (2202)	Decel (2203)
	HK30WA364	ACH550-U0-012A-2	1.7 HP 230V	HD56FR233	230	5.8	60Hz	1725	1.7	DI 2,3	40Hz	60Hz	60Hz	16 FLT/ Alarm	6.7	0Hz	60Hz	4kHz	Auto	Ramp	Not Sel	30 sec	30 sec
	HK30WA356	ACH550-U0-012A-2	1.7 HP 460V	HD56FR463	460	<mark>2.9</mark>	60Hz	<mark>1725</mark>	1.7	DI 2.3	40Hz	60Hz	60Hz	<mark>16 FLT/</mark> Alarm	3.3	<mark>0Hz</mark>	60Hz	<mark>4kHz</mark>	Auto	Ramp	Not Sel	30 sec	30 sec
	HK30WA366	ACH550-U0-017A-2	1.7 HP 575V	HD56FR579	575	3.1	60Hz	1725	1.7	DI 2,3	40Hz	60Hz	60Hz	16 FLT/ Alarm	3.6	0Hz	60Hz	4kHz	Auto	Ramp	Not Sel	30 sec	30 sec
	HK30WA352	ACH550-U0-024A-2	2.4 HP 230V	HD56FE653	230	7.9	60Hz	1725	2.4	DI 2,3	40Hz	60Hz	60Hz	16 FLT/ Alarm	9.1	0Hz	60Hz	4kHz	Auto	Ramp	Not Sel	30 sec	30 sec
	HK30WA356	ACH550-U0-06A9-4	2.4 HP 460V	HD56FE653	460	4	60Hz	1725	2.4	DI 2,3	40Hz	60Hz	60Hz	16 FLT/ Alarm	4.6	0Hz	60Hz	4kHz	Auto	Ramp	Not Sel	30 sec	30 sec
	HK30WA360	ACH550-U0-06A9-4	2.4 HP 575V	HD56FE577	575	3.4	60Hz	1725	2.4	DI 2,3	40Hz	60Hz	60Hz	16 FLT/ Alarm	3.9	0Hz	60Hz	4kHz	Auto	Ramp	Not Sel	30 sec	30 sec
	HK30WA352	ACH550-U0-06A9-4	2.9 HP 230V	HD58FE654	230	9.2	60Hz	1725	2.9	DI 2,3	40Hz	60Hz	60Hz	16 FLT/ Alarm	10.6	0Hz	60Hz	4kHz	Auto	Ramp	Not Sel	30 sec	30 sec
	HK30WA356	ACH550-U0-08A8-4	2.9 HP 460V	HD58FE654	460	4.6	60Hz	1725	2.9	DI 2,3	40Hz	60Hz	60Hz	16 FLT/ Alarm	5.3	0Hz	60Hz	4kHz	Auto	Ramp	Not Sel	30 sec	30 sec
	HK30WA353	ACH550-U0-012A-4	3.7 HP 230V	HD60FE656	230	11.2	60Hz	1725	3.7	DI 2,3	40Hz	60Hz	60Hz	16 FLT/ Alarm	12.9	0Hz	60Hz	4kHz	Auto	Ramp	Not Sel	30 sec	30 sec
00	HK30WA357	ACH550-U0-03A9-6	3.7 HP 460V	HD60FE656	460	5.6	60Hz	1725	3.7	DI 2,3	40Hz	60Hz	60Hz	16 FLT/ Alarm	6.4	0Hz	60Hz	4kHz	Auto	Ramp	Not Sel	30 sec	30 sec
	HK30WA361	ACH550-U0-06A1-6	3.7 HP 575V	HD58FE577	575	4.2	60Hz	1725	3.7	DI 2,3	40Hz	60Hz	60Hz	16 FLT/ Alarm	4.8	0Hz	60Hz	4kHz	Auto	Ramp	Not Sel	30 sec	30 sec
	HK30WA354	ACH550-U0-09A0-6	5.3 HP 230V	HD60FK658	230	13	60Hz	1740	5.3	DI 2,3	40Hz	60Hz	60Hz	16 FLT/ Alarm	150	0Hz	60Hz	4kHz	Auto	Ramp	Not Sel	30 sec	30 sec
	HK30WA358	ACH550-U0-07A5-2	5.3 HP 460V	HD60FK658	460	6.4	60Hz	1740	5.3	DI 2,3	40Hz	60Hz	60Hz	16 FLT/ Alarm	7.4	0Hz	60Hz	4kHz	Auto	Ramp	Not Sel	30 sec	30 sec
	HK30WA362	ACH550-U0-02A7-6	5.3 HP 575V	HD60FE576	575	5.4	60Hz	1725	5.3	DI 2,3	40Hz	60Hz	60Hz	16 FLT/ Alarm	6.2	0Hz	60Hz	4kHz	Auto	Ramp	Not Sel	30 sec	30 sec

Table 16 – VFD Parameters — 48/50TC 08-14, 50TCQ 08-12, 48/50HC 08-12 and 50HCQ 08-09

Never use the VFD to adjust airflow! Adjust the sheaves

VFD KEYPAD USE

Heat Sink Cleaning

The heat sink fins accumulate dust from the cooling air. In a normal environment check the heat sink annually, in a dusty environment check more often.

Use the following procedure to clean the heat sink on AHC550 VFDs:

- 1. Turn off and lock out unit power.
- Remove the drive cover (see Fig. 38).
- Press together the retaining clips on the top cover and lift (see Fig. 39).

Fig. 38 — Remove ACH550 VFD Front Cover

- Blow clean compressed air (not humid) from bottom to top while simultaneously using a vacuum cleaner at the air outlet to trap the dust.
- 5. Replace the cooling fan.
- 6. Replace the drive cover.
- 7. Restore power.

Use the following procedure to clean the heat sink on ASC320 VFDs:

- 1. Turn off and lock out unit power.
- 2. Insert a small straight blade screwdriver into the slot and press in to release the top cover as shown in Fig. 40.

Fig. 40 — Remove Top Cover on ACS320 VFD

- 3. Blow clean compressed air (not humid) from top of ACS320 while simultaneously using a vacuum cleaner at the base to trap the dust.
- 4. Replace the top cover.
- 5. Restore power.

VFD TIC2019-0016

TECHNICAL INFORMATION COMMUNICATION Quality and Continuous Improvement	Carrier
Number: TIC2019-0016 Title: ABB VFD Updates Product Category: Light Commercial	Date: 8/7/2019
Products Affected All ABB AC\$320 Drives	
Technical Information Parameters Updated to help prevent nuisance VFD shut down. 1611 set to (3) 2603 set to (0) 3102 set to (300.0s) 3103 set to (6) 3104 set to (1 Enable) 2102 set to (1 coast)	
Fuses upgraded from the drive minimum current to a current re reported issues. The changes are reflected in the drive service	presenting the various field manuals.
Catalog Number: Carrier VFD-07SI Bryant IIVFD-07	
Note all of the above changes have been correct at the factory 5018	1
Useful ABB Drive information:	
DO NOT USE THE ASSIST FUNCTION!	
DO NOT USE THE DRIVE TO BALANCE THE AIR (CFM)!	
Key pads do not come with the OEM drive 1. Before condemning the drive use a key pad to reprogram usin	ng factory supplied parameters.
Before programming with the key pad 1. Turn the key pad off to allow programming of the drive. Progr	amming is not possible if left on.
Only trained and qualified personnel should design, install, repair and service HVAC systems and equi must be followed when designing, installing, repairing and servicing HVAC systems and equipment. It codes, standards, and ordinances are met.	ipment. All national standards and safety codes is the responsibility of the Dealer to ensure local

VFD DRIVES

VFD unit for replacement. Wild Leg Power Supply requires a field supplied Delta-WYE transformer

This is less common power supply today but does occur in older city areas. Voltage reading look like this.

L1 to ground 120 volts

L2 to ground 240 volts

L3 to ground 120 volts

Note: the higher voltage on one leg with normal voltages on the other 2 legs.

VFD DRIVES

VFD vs Power Supply

With new codes pushing the addition of VFDs to our light commercial rooftops, there is a stronger emphasis on determining the power supply of the system before installing the unit. Depending on the power supply, modifications may need to be made in the field to ensure proper operation of the VFD.

Please see the below information on types of power supplies and the changes made to the filter screws on the factory installed VFD or when an isolation transformer is required to be installed. Please also refer to TIC2018-0004 (found on HVACpartners) and to the VFD manufacturer's user manual for additional information.

Power Supply Image		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		L2 L2 L3 All Leg Voltages Similar	L2 L3 Typically 2 Legs - 120V or 277V and 1 Leg - 240V or 480V
Power Supply Type	Wye Transformer, Symmetrically Grounded	Wye Transformer, High Resistance Ground	Delta Transformer, Corner Grounded (Unsymmetric)	Delta Transformer, Side Grounded (Unsymmetric)	High Leg Delta Transformer, Side Grounded (Unsymmetric)
ABB Drive Changes*	Optional, See Drive Chart	Yes, See Drive Chart	Yes, See Drive Chart ¹	Yes, See Drive Chart	Yes, See Highlight Below and Drive Chart
Danfoss Drive Changes*	No	Yes, See Drive Chart	Yes, See Drive Chart ¹	Yes, See Drive Chart	Yes, See Highlight Below and Drive Chart

*- When measuring voltage between phases of the power supply, the measurement must be within a 2% tolerance in order for the VFD to operate properly.

¹ - To help reduce noise an in-line reactor or isolation Delta-Wye transformer can be installed.

High Leg (Wild-Leg or Stinger-Leg) Power Supply - Installation of an isolation Delta-Wye transformer is required for proper operation of the VFD.

TEST AND BALANCE VFD BYPASS

REPLACEMENT VFD'S

- Replacement VFD's will come with a Remote Keypad
- Parameters will need to be programmed in the replacement VFD

ĈE

VFD Operation with Remote Keypad

SINGLE PHASE X-13 MOTOR

FAN ONLY OR WITH A Y1 X-13 MOTOR

ĈE

2ND STAGE COOLING Y2 OR W1 HEATING TO X-13 MOTOR

SINGLE PHASE IFMS USE X-13

ĈE

Properly align the pulleys.

Adjustable pulleys are for air balancing only. They should be replaced with a fixed sheave once proper size is determined.

Torque set screws properly. They can come loose and damage the blower assembly. Loose screws on adjustable sheaves WILL results in snapped belts.

CE

You must use a belt tensioner.

Belt Tension Checker

Power Transmission Solutions Regal Beloit America, Inc. 7120 New Buffington Road Florence, KY 41042 Application Engineering: 800 626 2093 www.RegalBeloit.com

FORM

5453E Revised November 2017

AWARNING

- · Read and follow all instructions carefully.
- Disconnect and lock out power before installation and maintenance. Working on or near energized equipment can result in severe injury or death.
- Do not operate equipment without guards in place. Exposed equipment can result in severe injury or death.

A CAUTION

 Periodic inspections should be performed. Failure to perform proper maintenance can result in premature product failure and personal injury.

Tensioning V-Belt Drives with a Browning® Tension Checker

General rules of tensioning

- 1. Ideal tension is the lowest tension at which the belt will not slip under peak load conditions.)
- 2. Check tension frequently during the first 24 hours of operation. Checks after jog start or 1-3 minutes of operation, at 8 hours, 24 hours, 100 hours and periodically thereafter are recommended.
- 3. Overtensioning shortens belt and bearing life.
- 4. Keep belts free of foreign material that may cause slip.
- 5. Make v-drive inspection on a periodic basis. Undertensioned belt drives often produce audible squeal noise. Tension when slipping. Never apply belt dressing as this will damage the belt and cause early failure.)

Tension Measurement Procedure

- .

- 1. Measure the belt span (see sketch).
- 2. Position bottom of the large o-ring on the span scale at the measured belt span.

You must use a belt tensioner to properly tension the belt.

		BELT DEFLECTION FORCE (LBS)										
		UNNO ⁻ BEI	TCHED LTS	NOTCHED BELTS								
CLOTION	DIAMETER	USED	NEW	USED	NEW							
	3.0-3.6	3.7	5.5	4.1	6.1							
A, AX	3.8-4.8	4.5	6.8	5.0	7.4							
	5.0-7.0	5.4	8.0	5.7	8.4							
	3.4-4.2	—	—	4.9	7.2							
B, BX	4.4-5.6	5.3	7.9	7.1	10.5							
	5.8-8.6	6.3	9.4	8.5	12.6							

Table 1

BELT CONDITION	TENSION FORCE IN BELT (LBS)
New	100
Used	80
	Tillio

CE

Pre-Start and Start-Up — This completes the mechanical installation of the unit. Refer to the unit's Service Manual for detailed Pre-Start and Start-Up instructions. Download the latest versions from HVAC Partners (www.hvacpartners.com). **Proper Belt Adjustment**

Do not pry/roll the belt onto the pulley with anything! You WILL damage the belt!

To get the belt onto the pulley, adjust the motor mounting plate to allow you to slip the belt onto the pulley by hand. Afterwards, readjust the mounting plate, and tension the belt with a belt tensioner.

Proper Belt Adjustment

Failure to torque set screws, align pulleys, or tension the belt properly WILL result in damage to the blower assembly.

This includes, but is not limited to:

- Broken belts
- Damaged sheaves (melted sheaves if composite).
- Bent motor mounting plate
- Damage to motor shaft, bearings, rotor, or windings leading to motor failure.
- Excessive noise and vibration.
- Damaged (shattered) blower wheels and damage to blower housing.
- Bad reputation, and rejected warranty claims.

Blower Start-up

- ROTATION CORRECT
- CONTINUOUS FAN MODE.
- AMPS (DOOR ON)(use data tag)
- ANY VIBRATIONS?

What is your CFM?

- Factory setting is mid range temp rise for heating.
- Small chassis units:

ĈE

- Pulley is 5 turns open
- Medium chassis units:
 Pullov is 3 turns or

Pulley is 3 turns open.

Do I have enough CFM? How do I check?

Using a Tachometer

BELT DRIVE UNITS

Motor rpm times sheave diameter divided by the blower sheave diameter = blower RPM Example-

Motor RPM X Motor Sheave \setminus Blower sheave = Blower wheel RPM

1725	Χ	3.5	÷	6.5" =	928 RPM	

3500 X 6" \div 15" = 1400 RPM

BELT DRIVE UNITS

48TC12 — 10 TON HORIZONTAL UNIT** (For more information, see General Fan Performance Notes on page 51.)

Predicted static pressure Target CFM 3500

				Available	e External St	atic Pressure	e (in. wg)				
CFM	0.	.2	0.	.4	0.	.6	0.	.8	(1.0)		
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	
3000	579	0.70	660	0.89	732	1.09	799	1.29	860	1.50	
3250	613	0.85	690	1.06	760	1.27	823	1.49	883	1.71	
3500	648	1.03	721	1.25	788	1.48	850	1.71	907	1.95	
3750	683	1.23	753	1.47	817	1.71	877	1.96	933	2.21	
4000	719	1.45	786	1.71	848	1.97	905	2.23	959	2.50	
4250	756	1.71	819	1.98	879	2.26	934	2.53	987	2.81	
4500	792	1.99	853	2.28	910	2.57	964	2.87	1015	3.16	
4750	830	2.31	888	2.62	943	2.92	995	3.23	1044	3.54	
5000	867	2.66	923	2.98	976	3.30	1026	3.63	1074	3.95	

This is RPM of the blower wheel not the motor

BELT DRIVE UNITS

PULLEY ADJUSTMENT - VERTICAL

48TC	MOTOB/DBIVE				MO	tor Pull	EY TURNS	6 OPEN (R	PM)			
UNIT	СОМВО	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
	Standard Static	1457	1419	1380	1342	1303	1265	1227	1188	1150	1111	1073
07	Medium Static	1518	1484	1449	1415	1380	1346	1311	1277	1242	1208	1173
	High Static	1550	1542	1535	1527	1520	1512	1504	1497	1489	1482	1474
08	Standard Static	747	721	695	670	644	618	592	566	541	515	489
	Medium Static	949	927	906	884	863	841	819	798	776	755	733
	High Static*	1102	1083	1063	1044	1025	1006	986	967	948	928	909
	Standard Static	733	712	690	669	647	626	604	583	561	540	518
09	Medium Static	936	911	887	862	838	813	788	764	739	715	690
	High Static	1084	1059	1035	1010	986	961	936	912	887	863	838
	Standard Static	838	813	789	764	739	715	690	665	640	616	591
12	Medium Static	1084	1059	1035	1010	986	961	936	912	887	863	838
	High Static	1240	1218	1196	1175	1153	1131	1109	1087	1066	1044	1022
	Standard Static	843	824	805	786	767	748	728	709	690	671	652
14	Medium Static	1084	1059	1035	1010	986	961	936	912	887	863	838

CHECKING STATIC PRESSURE

Return -.3" wc + Supply +.5" wc = .8" wc Total

NOW TRANSFER THE READINGS TO THE FAN CHART

Table 61 – 48TC**12									3 PHASE								10 TON VERTICAL SUPPLY				
	AVAILABLE EXTERNAL STATIC PRESSURE (in. wg)																				
CFM	FM 0.2		0.2 0.4		0.6		0.8		1.0		1.2		1.4		1.6		1.8		2	.0	
	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	
3000	616	0.79	689	0.97	757	1.16	821	1.36	882	1.57	939	1.79	994	2.01	1047	2.24	1098	2.47	1147	2.71	
3250	655	0.96	724	1.16	788	1.37	849	1.58	907	1.80	962	2.03	1015	2.26	1066	2.50	1115	2.75	1163	3.00	
3500	695	1.17	760	1.38	821	1.60	879	1.83	934	2.06	987	2.30	1038	2.54	1088	2.80	1135	3.05	1181	3.32	
3750	736	1.41	797	1.63	855	1.86	910	2.10	963	2.35	1014	2.60	1063	2.86	1111	3.12	1157	3.39	1202	3.66	
4000	777	1.68	834	1.91	889	2.16	942	2.41	993	2.67	1042	2.93	1090	3.20	1136	3.48	1180	3.76	1224	4.04	
4250	818	1.98	873	2.23	925	2.49	976	2.75	1025	3.02	1072	3.30	1118	3.58	1162	3.87	1205	4.16	1247	4.46	
4500	860	2.32	912	2.58	962	2.85	1010	3.13	1057	3.41	1103	3.70	1147	4.00	1190	4.29	1232	4.60	-	-	
4750	902	2.69	951	2.97	999	3.26	1046	3.55	1091	3.84	1135	4.14	1177	4.45	-	-	-	-	-	-	
5000	944	3.11	991	3.40	1037	3.70	1082	4.00	1125	4.31	1167	4.63	-	-	-	-	-	-	-	-	

STD Static - 591-838 RPM, 2.4 Max BHP

MED Static - 838-1084 RPM, 3.7 Max BHP

HIGH Static - 1022-1240 RPM, 4.7 Max BHP

Bold Face = Field Supplied Drive Required.

For more information, see General Fan Performance Notes on page 64.

You will need to adjust the pulley to get the desired airflow In this case, since out target was 3500cfm, we need to open the motor sheave to slow the motor down to 879 RPM And then re-measure and adjust

ĈE

IS THE TEMPERATURE RISE IN RANGE?

- Is the unit over fired?
- Is the air flow correct?

48/50JC Unit Product Familiarization

48/50 JC UNIT FAMILIARIZATION

COMPRESSOR VFD

- Not typical VFD
- Comprised of 5 components
 - Main drive board
 - Filter board
 - · Capacitor board
 - Choke
 - Converter board

Power Supply

CE

All 208/230-v units are factory wired for 230-v power supply. If the 208/230-v unit is to be connected to a 208-v power supply, the transformers must be rewired by moving the wire from the 230-volt connection and moving to the 200-volt terminal on the primary side of the transformer. Refer to unit label diagram for additional information.

Fig. 29 — Control Box Layout

DRIVE BOARD

Connection side

DRIVE BOARD

- Drive board is heart of VFD
- Contains safety logic
- Modifies supply voltage to the voltage frequency the compressor needs
- Will reduce compressor speed in high current/temperature situations
- Monitors safeties (HPS & DLT)
- Communicates in Modbus to the converter board.

DRIVE BOARD

TERMINAL LABEL	DESCRIPTION	TYPE	CONNECTOR
HPS	High Pressure switch input	3.3vdc	2 Pins
SENSOR	DLT sensor input	10k thermistor	Pins 1 and 2 (inner 2 pins)
RS485	Modbus communication with the converter board	RS485 Communication	Pins 1,4, and 5
L1, L2, L3	Supply Power from the filter board	AC high voltage	3x screw terminals
GRN	Supply Ground	Chassis Ground	2x 1/4-in. Quick Connect
DC+OUT, DC-OUT	DC bus out to capacitor board	DC high voltage	2x 1/4-in. Quick Connect
DC+IN, DC-IN	DC bus in from the capacitor board	DC high voltage	2x 1/4-in. Quick Connect
U, V, W	Output to the compressor	AC High voltage	3x screw terminals

Table 27 — Drive Board Inputs/Outputs

ĈE

CONVERTER/ANALOG BOARD

Fig. 29 — Control Box Layout

CONVERTER/ANALOG BOARD

- Troubleshooting interface
- Interface between System Vu and VFD
- Converts System Vu control signal to Modbus for drive board
- Configures the drive board
- It will read "IDLE" when in standby waiting for a signal, and the software version "S##.#" will alternate with "IDLE" during standby. It will show the actual compressor running RPM while performing cooling.
- Converter board = Analog board in Epic HR46UR006

CONVERTER/ANALOG BOARD - INPUTS AND OUTPUTS

Fig. 3	1 — Conver	ter Board
--------	------------	-----------

REFERENCE NUMBER	DESCRIPTION	ТҮРЕ	CONNECTOR
1	Not used	_	—
2	Not used	_	—
3	Modbus communication with the drive board	RS485 Communication	Pins 1,2, and 3
4	Input control from SystemVu	PWM signal	Pins 1 and 3
5	Start/Stop input	24vac	Pins 1 and 2
6	Not used	_	—
7	Power supply	24vac	Pins 1 and 2
8	Not used	—	—
9	Not used	_	—

CONVERTER/ANALOG BOARD

- Provides configurations to drive board
- Four rotary switches
- Required settings are on unit schematic

+ -					
	Size	Switch 1	Switch 2	Switch 3	Switch 4
	04 (3Ton)	3	3	1	1
	05 (4Ton)	3	4	1	1
	06 (5Ton)	3	5	5	1

CONVERTER/ANALOG BOARD FOLDBACK STATUS DISPLAY

- Drive board is "folding back" to protect compressor
- Running RPM will alternate with Sd## code

Table 15 — Converter Board Foldback Codes

FOLDBACK CODE	FOLDBACK DESCRIPTION
Sd01	Configuration Status (EEPROM/FLASH)
Sd02	Speed Foldback Flag (Output Voltage Limit)
Sd03	PFC Temperature Foldback Status
Sd04	AC Input Current Foldback Status
Sd05	Compressor Phase Current Foldback Status
Sd06	Compressor Power Module Temperature Foldback Status
Sd07	DLT Temperature Foldback Status
Sd08	Output Capacity Foldback Status
Sd09	Autosaved Data Status
Sd10	Speed Foldback Flag (Torque Limit)

CONVERTER/ANALOG BOARD ERROR STATUS DISPLAY

CE

• Error codes start with E-

• If the drive board is folding back the speed to protect the current, the running RPM will alternate with "Sd##" where the number indicates the reason for fold back.

• See Service and Maintenance Instructions for codes

FILTER BOARD

FILTER BOARD

ĈE

- Filter board supports drive board
- Assists in filtering "noise" and voltage spikes
- For troubleshooting make sure the AC voltage is the same going into the board and coming out of the board.

TERMINAL LABEL	DESCRIPTION	TYPE	CONNECTOR	
L1_IN, L2_IN, L3_IN	Supply Power	AC High voltage	3x screw terminals	
GRN	Supply Ground	Chassis Ground	1x screw terminal	
L1_OUT, L2_OUT, L3_OUT	Supply Power to Drive board	AC High voltage	3x screw terminals	

CHOKE

Fig. 29 — Control Box Layout

CHOKE

ĈE

- Heaviest component protecting DC bus
- Between DC output of drive board & DC input of capacitor board

• It is not direction sensitive so the wires can be swapped. Make sure the voltage is the same leaving the drive board as entering the capacitor board.

CAPACITOR BOARD

Fig. 29 — Control Box Layout

CAPACITOR BOARD

ĈE

- Stabilizes DC bus used by drive board
- Polarity sensitive
- DC IN is High DC voltage in from the drive board
- DC Out is High DC voltage TO the drive board
- Entering and leaving voltage is the same.

CAPACITOR BOARD SERVICE

ĈE

- Look for bulged capacitors
- SAFETY WARNING
- Power down for 5 minutes
- LED off before servicing/removing

COMPRESSOR

- Use test mode to check for proper rotation
- Rotation incorrect
- Controls stop compressor
- Alarm Circuit A Reverse Rotation
- Fix reverse rotation
- Power down/lock out tag out
- Switch two leads Compressor VFD output to compressor
- Swapping unit incoming power will not change rotation

System Vu

SYSTEM VU

- 4 lines 30 characters per line
- 6 Buttons
- Backlight
- Same basic operation as Marquee/Navigator
- 3 LEDs showing high level status (traffic light model)

#	Button(s)	Commands
1	Up (▲)	Move Up
2	Down (▼)	Move Down
	Enter	Advance/Select
4	Back	Go Back
5	Menu	Main Menu
6	Test	Test Menu
7	Hold Up (▲)	Move Up Quickly
8	Hold Down (▼)	Move Down Quickly
	Up & Down	Point Force Clear
10	Enter & Back	Expansion of Item
11	Hold Menu for 5 seconds	Short Cut to Language Select
12	Hold Back for 5 seconds	Standby Screen/Logout
13	Hold Test for 5 seconds	Toggle Backlight

 First key press always turns on the backlight if it is off

- J2 Transformer 1 (1 & 8)
- J4 Digital Configurable drain pan (1-4)
- J5 Digital Configurable fire shutdown (1-4)
- J6 Digital GC fan request (48 series) (1-2)

- J7 Economizer Analog
 - Actuator position (3 & 8)
 - Configurable IAQ level (1 &5-6)
 - Configurable Outdoor Air RH (2 & 6-7)
- J8 Thermistors 10K
 - Supply air temp (1 & 4)
 - Return air temp (2 & 5)
 - Outdoor air temp (3 & 6)
- J9 Transducers 0-5 vdc
 - Cir A suction press (1-2 & 5)
 - Circuit A discharge press (4-3 & 6)

- TB5
 - Configurable 0-20 mA (4-6)
 - Slider offset thermistor 10K (2-3)
 - Space temp thermistor 10K (1-2)
- J18

٠

- Indoor fan limit switch (2 & 4 & not shown quick connects 1-2)
- Configurable (1 & 3 & not shown quick connects 3-4)

TB3

- Filter status FIOP or field installed (1–2)
- Configurable (3-4)
- Configurable f/phase monitor (5-6)
- TB1
 - Stat connections
 - Humidistat configurable field installed Y3

- J7 Economizer Analog
 - Economizer command 0-20 mA (4 & 8)
- J10 Indoor PWM fan command RPM (1-4)
- J11 Outdoor PWM fan command RPM (1-4)

- J12 PWM Compressor RPM Command
 - To converter board (1-4)
- TB2 Configurable for alarm relay (3 & 4)
- J3A Crankcase heater relay (1 & 3)
- J3C When applicable Power Exhaust (1-4)

- J3D Humidi-mizer reheat
 - Reheat discharge valve (1 & 4)
 - Reheat liquid valve (2 &5)
 - Cooling liquid valve (3 & 6)
- J3E Heat electric or gas
 - Stage 1 relay (2 & 4)
 - Stage 2 relay (1 & 3)

SYSTEM VU MAIN BASE BOARD COMMUNICATION

- TB4 Building Automation System BAS (1-4)
 - CCN or BAC Net
- J17 Local Equipment Network LEN
- J20 RNET sensors (1-4)
- J24 RNET service access (1-5)

SYSTEM VU MAIN BASE BOARD DISPLAY CONNECTIONS

SYSTEM VU QUICK SETUP MENU

SYSTEMVU DISPLAY	EXPANDED NAME	RANGE	DEFAULT
QUICK SETUP CONFIG	QUICK SETUP CONFIG MENU		
DATE	Current Date	MM/DD/YYYY	
TIME	Clock Hour and Minute	HH:MM	
STARTUP DELAY	Unit Startup Delay	10 to 600	30
UNIT CONTROL TYPE	Unit Control Type	0=TSTAT, 1=SPACE SEN, 2=RAT SEN	0
THERMOSTAT TYPE	Thermostat Hardware Type	0=CONV 2C2H, 1=DIGI 2C2H, 2=CONV 3C2H, 3=DIGI 3C2H	2
DIRTY FILTER TIME	Change Filter Timer	0 to 9999	600
HEATING STAG QTY	Number of Heating Stages	1 to 2	2*
VENT METHOD	Ventilation Method	0=NONE 1=ECON 2=2POS DMPR 3=ERV 4=ECON ERV	0*
FREECOOL MAX	Free Cooling Max OAT	0 to 90	65
FIRE SW CHANNEL	Fire Switch Channel	0=None, 1=MBB DI12, 2=MBB DI13, 3=MBB DI14, 4=MBB DI02, 5=MBB DI03 6=MBB DI05, 7-MBB Y3	0*
COOL DESIGN SPEED	Cooling Design Point Spd	0 to 3000	1864*
IDF VENT SPD	IDF Vent Speed	0 to 3000	900*
IDF HEAT SPD	IDF Heat Speed	0 to 3000	2100*
QUICK SET CHKLIST	QUICK SETUP CHECKLIST	0=Undone, 1=View, 2=Done	0

START UP PAGE 145

CONTROLS, START-UP, OPERATION AND TROUBLESHOOTING

CONTROL SET POINT AND CONFIGURATION LOG

MODEL NO:	SOFTWARE VERSION:	
SERIAL NO:	MBB: CESR131651	
DATE:		
TECHNICIAN:		

INDICATE UNIT SETTINGS BELOW

CONTROL TYPE: Thermostat/T-55 Space Temp./T-56 Space Temp./T-59 Space Temp.

SETPOINT:

Cooling Occupied: _____ Unoccupied: _____

Heating Occupied: _____ Unoccupied: _____

SETTINGS - MAIN MENU LAYOUT

DISPLAY TEXT	EXPANDED DISPLAY TEXT	VALUES	UNITS	DEFAULT	POINT	ENTRY
SETTINGS	SETTINGS MENU					
SPACE SET POINTS	Space Setpoints Adjustment Menu					
OCC COOL SETPOINT	Occupied Cool Setpoint	55 to 80	°F	78	OCSP	
OCC HEAT SETPOINT	Occupied Heat Setpoint	55 to 80	°F	68	OHSP	
UNOCC COOL SETPNT	Unoccupied Cool Setpoint	65 to 95	°F	85	UCSP	
UNOCC HEAT SETPNT	Unoccupied Heat Setpoint	40 to 80	°F	60	UHSP	
HEAT-COOL SP GAP	Heat-Cool Setpoint Gap	2 to 10	°F	5	HCSP_GAP	
SPT SLIDER RANGE	SPT Offset Range (+/-)	0 to 5	°F	5	SPTO_RNG	
OCC SPRH SETPOINT	Occupied SPRH Setpoint	0 to 100	%	50	SPRH_OSP	
UNOCC SPRH SET PT	Unoccupied SPRH Setpoint	0 to 100	%	80	SPRH_USP	
SPRH RH DEADBAND	Space RH Deadband	2 to 20	%	8	SPRH_DB	
SA TEMPERING SP	SA tempering Set point	30 to 80	°F	55	SATEMPSP	
TEMP DEMAND CONFIG	Temperature Demand Configuration menu					
LOW COOL DMD ON	Low Cool Demand On	-1 to 2	°F	0.5	DMDLCON	
HIGH COOL DMD ON	High Cool Demand On	0.5 to 20	°F	1.5	DMDHCON	
	Low Oral Damard Off	4 4 - 0	0	0.5		

SYSTEM VU START UP

SYSTEM VU CONTROL TYPE

FIELD CONTROL WIRING

The 48JC unit comes standard with SystemVu controls. An external space sensor or conventional thermostat is required (field-supplied).

SPACE TEMPERATURE SENSOR (SPT)

There are 2 types of space temperature sensors available from Carrier, resistive input non-communicating (T-55, T-56 and T-59) and Rnet communicating (ZS) sensors. Each type has a variety of options consisting of: timed override button, set point adjustment, a LCD screen, combination of humidity or CO_2 sensing and communication tie in. Space temperature can be also be written to from a building network or zoning system.

Fig. 38 shows the wiring connections from the accessory space temperature sensors to the SystemVu MBB.

Space Temperature Sensor (T-56)

The T-56 space temperature sensor (part no. 33ZCT56SPT) is a field-installed accessory. This sensor includes a sliding scale on the front cover that permits an occupant to adjust the space temperature set point remotely. The T-56 sensor also includes an override button on the front cover to allow occupants to override the unoccupied schedule (if programmed).

B5-1	t
B5-2 Sensor Common	1
B5-3 Setpoint Offset Inpu	t

SYSTEM VU CONTROL TYPE

Space Temperature Sensor Control - Direct Wired (T-55 or T-56 or T-59)

Wire accessory space temperature sensor(s) to the T-55 terminals on the field connection terminal board located at the unit control box. Refer to Space Mounted Sensors section (page 58) for additional information.

The Unit Control Type configuration, (UNIT CONTROL TYPE) must be set to Space Sensor (1).

System / ∕u™	ũ [™] DISPLAY MENU			
SHUTDOWN UNIT RUN STATUS ONIOFF ONIOFF OUL HEAT VENTILATION GENERAL OCCUPANCY	SETTINGS SPACE SET POINTS CLOCK SCHEDULES UNIT CONFIGURATIONS NETWORK SETTINGS DISPLAY SETTINGS OIICK SETTINGS	SERVICE INPUTS UNIT IESTS UNIT INFORMATION HARDWARE CALIBRATION COMMISSION REPORTS ADVANCED SERVICE SWITCH INPUTS GENERAL INPUTS GENERAL INPUTS	OUTPUTS GENERAL OUTPUTS COOLING OUTPUTS HEATING OUTPUTS	USB DATA ACQUISITION SAVE CONFIGS TO FILE SAVE CONFIGS FROM FILE FILE TRANSFER UPGRADE SOFTWARE

Thermostat Control

Wire accessory thermostat to the corresponding R, Y1, Y2, W1, W2, and G terminals on the Main Base board.

The Unit Control Type configuration, (UNIT CONTROL TYPE) default value is for thermostat (0) so there is no need to configure this item.

The Thermostat Hardware Type, (*THERMOSTAT TYPE*) selects the unit response to the thermostat inputs above.

NOTE: May not be compatible with heat anticipator thermostats.

SYSTEM VU CONTROL TYPE

NETWORK CHECKLIST

SYSTEM AUTO TEST

SYSTEM VU INDOOR FAN SET-UP

48/50JC SYSTEM VU ECONOMIZER MIN. POS.

Metering Devices

ACUTROL[™] TEE ASSEMBLY

COIL ASSEMBLY – COOLING

COIL ASSEMBLY – HEATING

ACUTROL[™] TROUBLESHOOTING

- Disable fan motor
- Start unit in desired mode
- Observe coil frosting pattern
- Frosting should develop uniformly

CE

 Non-uniform frosting may indicate a plugged, damaged, or missing orifice

THERMOSTATIC EXPANSION VALVE

TXV for Ultra-High Efficiency Units:

ĈE

LOCATING THE TXV BULB

- TXV bulb centered axially in suction line tooled depression
- Do not position clamp's gear housing over the bulb radius
- Locate the bulb's capillary against the suction tube

INSULATING THE TXV BULB WITH CORK TAPE

INSULATING THE TXV BULB WITH FOAM RUBBER

- Wrap bulb and cork tape with two layers of foam rubber insulation
- Secure the ends of the foam rubber insulation with two wire ties

System Repairs

REPLACING SEALED SYSTEM COMPONENTS

PURON® REFRIGERANT FILTER DRIER

STABILIZE SYSTEM

- Use charging charts in COOLING MODE
- Charge conditions to be checked:
 - Outdoor Temperature
 - Suction Pressure
 - Suction Line Temperature (use digital probe thermometer)
- Use accurate gage manifold to check pressures
- Front access panels should be in place for accurate readings
- Route hoses through hole in panel of compressor section
- Allow to operate 15 minutes to stabilize for accurate readings

USING THE COOLING CHARGING CHART

WEIGH-IN CHARGE HEAT PUMP HEATING

NOVATION[®] MCHX CONDENSER COILS

NOVATION™ RCD REPAIR KIT

- 50TJ660007
- Note: If refrigerant system is open, then replace liquid line drier

INSTRUCTIONS

Instruction Sheet Number: 99TA526347

Page 1 of 7

99TA526347 (for RCD use only)

Description: MCHX COIL REPAIR PROCEDURE

Author: Engineering

Torch MAPP Gas

DESCRIPTION	PART NUMBER	QTY
Solder wire	30XA680004	1
Non-corrosive Flux	30XA680005	1
Aluminum Air Center	30XA680006	1
Instant Adhesive	30XA680007	1
Heat Shield w/slot	30XA680003	3
Heat Shield w/o slot	30XA680002	3
Long nose pliers	KLE-D314-8	1
Bristle brush	B-4	1
Instructions	99TA526347	1
Not included:		
Paint	30XA680001	

TUR-0386-1293

TUR-0916-0009

Date: January 15, 2007

REPAIR PROCEDURES

Step 1

- Locate the damaged area and verify the leak site using standard leak detection practices.
- Note: The tube construction is capable of withstanding mild impacts as long as the impact is not sharp and does not cut into the tube.

Step 2

CE

- It is not necessary to remove the fins to repair the coil. In cases where fins must be removed to access the repair area, use the following procedure.
- Using needle nose pliers, remove the fins above and below the tube needing repair. Remove the fins approximately 1"either side of the repair location.
- Note: Remove the fin by grabbing them with the long nose pliers and slowly tearing the fin away from the tube.
- Advice: Remove the fin only to a depth sufficient to make the repair while retaining the best cosmetic appearance when viewing the repair from the opposite side.

Note: Use caution when working with sharp objects around the refrigerant tubes

Step 3

 Remove all foreign debris around the damaged area with a small stainless bristle brush. Avoid contaminating the damaged area.

Step 4 (Optional)

- Step 4 is optional depending on the condition of the coil
- Thoroughly clean repair area with mild soap and water (dish soap).
- Thoroughly rinse the area with clean water.
- Using a MAPP gas torch, carefully evaporate any remaining water
- Repeat washing, rinse and drying procedure if necessary.
- Heat from the torch should eliminate all moisture and contaminates.
- To ensure no moisture remains in the coil, after the repair is complete, place a vacuum on the system to evaporate any remaining moisture.

Step 5

 Place metal mask material (heat shield) around the damaged area to protect adjacent tubes and air centers.

Tube Nose Repair

Step 6

Repairing an angled coil:

- Cut tabs into the mask material long enough to extend completely through the core (greater than 1").
- Mount the mask on to the core using the tabs to hold in place

Step 7

- Adjust the torch tip to a neutral or rich carburizing (low oxygen) flame (450°-500°C)
- Apply heat to the edge of the damaged area.
- Place the end of the solder wire against the damage and gradually heat the edge of the tube and mask area parallel to the damage until the solder wicks into to the core tube ports.
- Allow to cool and remove the masks.
- The core tube walls are very thin, and it's possible to burn through the tube wall if excessive heat is applied.

Step 8

- Once the repair area has sufficiently cooled, prepare the coil for leak test
- Complete leak testing the repaired area per established industry standards to ensure repair was successful.

Step 9 (Optional)

- Replace air center if removed.
- Using tin snip or shears, cut a portion of replacement air center equal to the length and width previously removed. Apply instant adhesive (LOCTITE 430) to hold the replaced air center in place.
- Picture 2 shows the core after repair from the reverse side taking advantage of the advice referred to in step #2 above.

SYSTEM BURNOUT

Mild Burnout

Little or no odor

Compressor oil slightly discolored

Acid test is negative

Treated as a mechanical failure Replace filter drier

Severe Burnout

Strong pungent odor Compressor oil very dark Acid test is positive System will have to be cleaned

SEVERE SYSTEM BURNOUT

- Recover refrigerant
- Replace failed compressor
- Recharge the circuit with fresh oil
- Install suction line filter drier
- Leak check, evacuate, and recharge system
- Operate compressors
- Replace filter drier core
- Perform additional acid tests

System Maintenance
ONE MONTH/THREE MONTH MAINTENANCE

Every Month

Check coils for debris Check indoor air filter

Every Three Months

Check all refrigerant joints and valves for leaks

Check all fans and motors and clean blower wheel

Check crankcase heater operation

Check indoor air filters

Check indoor coil, drain pan and trap

Check filter drier pressure drop

TWELVE MONTH MAINTENANCE

- Check all electrical connections
- Inspect all contractors and relays
- Check condenser fans

CE

Check refrigerant charge

CONDENSER COILS

CE

To remove top cover:

- Remove screws along top cover perimeter
- Remove screws securing condenser fan guard to top cover
- Remove condenser fan motor assembly with fan guard
 - Turn it over and lay flat on top cover
- Disconnect three motor leads to control box
- Move cover to gain access to condenser coil

OUTDOOR COIL SECTION

CLEANING COPPER TUBE/ALUMINUM FIN CONDENSER TUBE

CE

- Use vacuum cleaner or soft bristle brush
- Clean fibers before using water rinse
- Rinse coils regularly in coastal locations
- Clean monthly
- Use environmentally sound cleaners
- DO NOT use harmful chemicals
- Clean Novation[®] MCHX coils with water only

CLEANING NOVATION® MCHX COILS

CLEANING NOVATION® MCHX CONDENSER COILS:

- NEVER use chemicals for coil cleaning
- Remove foreign objects from face of coil
- Purge tank and hose of cleaners
- Saturate coil with water from top to bottom
- Do not exceed 900 psig or a 45° angle
- Reduce pressure and use caution in air centers
- · Allow water to drain and check for refrigerant leaks
- Note: When reinstalling hail guard, DO NOT install screws into unused holes in top cover (will damage coil)

HEAT EXCHANGER TECHNOLOGY

