2022 Basic Duct Sizing Simplified

Instructor: Josh Goodman Josh.goodman@carrierenterprise.com

INTRODUCTION TO DUCT DIAGNOSTICS

Terminology

- Learn the key words and what they mean

Residential Duct System Classifications

- Understand what an Extended Plenum System, Radial System, Metal, Ductboard, Flex System, ... is

• Dampers, Boots, Grills, Wye's, Takeoff's, ...

- Learn the components that make up a duct system

The Duct Calculator(s)

- Learn the Basics of
- Correct use and application
- What it can tell you

INTRODUCTION TO DUCT DIAGNOSTICS

Equivalent Lengths

- Affect on Blower (Air Mover) Selection
- Learn about the pressure drops of Fittings / Takeoffs / . . .
- Adjustment Equations to Customize your Design to the Decimal Point!

• Blower Static and Available Static Pressure

- Learn the Effect on Duct Size
- The influence and effect of Accessories
- Why Selection and Data Interpretation Affects Cost and Customer Satisfaction

IF ITS AN EXISTING SYSTEM, OUR GOALS

Will Be Able to Recognize "Pinch and Problem Points" in the Duct System Needing Corrections!

These Pinch and Problem Points restrict airflow

and create excessive pressure drops and noise that

reduce delivered airflow

Just the Right Amount of Properly Conditioned Air Delivered In the Correct Volume (CFM) Properly Distributed and Mixed throughout the Room!

COMFORT

Just the Right Amount of Properly Conditioned Air

(Load Calculation) (equipment and accessory selection)

<u>Delivered</u> In the <u>Correct Volume</u> (CFM)

(duct design)

CF

(balanced)

<u>Properly Distributed</u> and <u>Mixed throughout the Room!</u> (diffuser, register & grill selection) (placement)

"COMFORT" requires a lot more than "Temperature Control" Comfort requires Design, Installation & Equipment Integration

DUCT SYSTEM CLASSIFICATIONS

Many Ways to Classify a Duct System

- <u>Materials</u> Galvanized or Stainless Steel, Fiberglass Board and Round, PVC (code issues), Flexible Wire Helix (Flex)
- <u>Geometry</u> Trunk and Branch, Radial, Perimeter
- <u>Supply and Return System</u> Ceiling, Floor, Sidewall (high or low), Perimeter (blanket outside walls)
- <u>Location</u> Attic, Basement, Crawl Space, Under the Slab, Dropped or Furred In Ceilings

RADIAL SYSTEMS

Easy to install

Central Supply plenum feeding branch ducts

Ground slab, Crawl Space & Attic

Metal or Flex Duct

PERIMETER LOOP SYSTEM

Cold climate Ground Slab Good Heating Comfort Difficult to design High heat losses

EXTENDED PLENUM

Easy to install Easy to fabricate Simple & common fittings Runouts closest to blower are hardest to get air into Very common residential system Trunk serves as elongated plenum Branch duct deliver air to each room

REDUCING PLENUM

Improves performance of Extended Plenum

Branch ducts deliver air to each room

Easy to fabricate

Easy to install

Simple & common fittings

Trunk reduction helps turn air

REDUCING TRUNK

Improves performance of Reducing Plenum Branch ducts deliver air to each room Most labor to fabricate and install Trunk is reduced after every take-off Trunk reduction helps turn air High Design Complexity Very Best Type of Duct System but Most Expensive

PRIMARY-SECONDARY TRUNK

"T" at end of duct acts as a reducer

Branch ducts deliver air to each room

Can be compared to "Reducing Plenum or Trunk System"

Greater Design Complexity

FLEX DUCT

Central Supply plenum feeding branch ducts

High versatility & movability

Easy to install

Crawl Space & Attic

Central location

Inexpensive

Coils & loops create high pressure drops

Easy to kink (high P.D.)

ACCESSORIES

Cased Coil

Whole House Air Cleaner

Humidifiers

Fan Powered

and Bypass

UV Lights

Media Air Cleaner

EL- EQUIVALENT LENGTH

What does it mean? Duct runs consist of straight lengths and fittings. Pressure losses occur in both.

Normally, the pressure loss in fittings is greater than the pressure loss in a straight length of ductwork.

EL or Equivalent Length is a convenient method to try to express and equate the fitting loss to an equal or equivalent loss in a straight run of duct.

In short, a fitting having an equivalent length(EL) of 22 feet. This fitting would produce the same pressure drop as it would a straight run of duct 22 feet long.

RULES OF THUMB FOR STATIC PRESSURE

What have we been told we should set our duct calculators too?

<u>Supply</u>	<u>Return</u>	But where did these
0.10"	0.08"	
0.08"	0.05"	

1940 AND 50'S DUCT DESIGNS

In the early days of home central systems, heating only systems dominated the market.

The typical house in the north was either a single- or two-story structure with a basement. The house footprint was 20 or 25 ft by 40 to 50 ft. The furnace was usually centrally located in the basement and the main trunk for the ductwork ran down the center of the basement with runouts to either a sidewall or floor diffuser. Total required fan pressure to overcome the ductwork friction losses normally ran 0.08" to 0.12" w.g., with most @ 0.10".

Remember, these early systems were designed and installed by contractors who were in the commercial heating and air conditioning business and had their own sheet metal shops building the fittings and ductwork.

COMMERCIAL DESIGNERS

- **Commercial systems** usually have the Fan and Motor Horsepower selected to meet the required static and airflow requirement of the system.
 - The Designer's starting point is recommended at around 0.10" w.g./100ft or higher. Duct runs can be over 1000 equivalent ft and require larger and more powerful blowers than most residential systems.
 - In summary, <u>ductwork sizing is independent of the equipment</u>. In the early days of home central systems, all contractors were commercial. Residential contracting developed out of this base into what it is today.
- Residential systems on the other hand, must have the ductwork designed to work with the blower supplied with the equipment.
 - In summary, <u>ductwork sizing is dependent on the equipment blower</u>.

RULES OF THUMB/UN-SUPPORTABLE CUSTOMS

Normally we started with a guideline that worked most of the time for a situation.

The Situation: Two story house with a basement, furnace located in center of basement. Simple duct system, 0.10"wg worked almost all the time.

In the late 70's / early 80's the house layout changed, they became larger which means more duct, along with furnace the location changed.

Results showed that the old rule no longer worked as good, and more complaints were being reported.

So, if 0.10" created problems, we used 0.08" that seemed to make everything ok, and the customers did not complain.

I noticed a pattern back then; the indoor units were a half ton larger than the outdoor unit

Until the 2000's, everything changed, SEER and tax credits

RULES OF THUMB/UN-SUPPORTABLE CUSTOMS

As SEER and tax credits came into play how did that affect service technicians?

As increased SEER requirements were placed on manufactures. What this meant was the unit must have a reduction in wattage consumption to do the same amount of work.

Which unfortunately means depending on your SEER and equipment combination you select there may be no leeway in the blower to overcome questionable duct work.

I am not saying ALL HIGH SEER units must have "great" duct system. It would depend on the equipment selected for the application.

That's why we need to understand how a duct calculator works.

ĈE

Duct Calculator Mis-(Missed) Conceptions

IR DUC'

CALCULATOR

Vish Air Quantity (CFM) and Friction Loss Air Quantity (CFM) opposite of Friction Loss. Air Quantity (CFM) opposite of Air Quantity (CFM). 4 Velocity (FPM) opposite of Air Quantity (CFM).

Duct Diameter opposite of arrow. lent Rectangular Duct Dimension 300 CFM @ .08 Inches of Water per 100 ft. en: 200 CFM 世 100 munes un Meles Per 130 m Size of Round Duct, Velocity, Equivalent Duct Dime

alocity @ 650 FPM.

Read Duct Diameter @ 9.2",

t Dimensions 6" x 12" or 5" x 15".

Setting @ 0.10" or .08" just means the designer has determined that his design can handle a Static Pressure Loss of 0.10 inch w.g. per 100 equivalent ft of duct work and **NOT THAT THE DUCTWORK WILL ONLY HAVE A 0.10" TOTAL PRESSURE LOSS**

MicroMetl Indianapolis 3035 N. Shadeland Ave., Suite 300 Indianapolis, IN 46226 1-800-MMC-HVAC (EST)

MicroMetl Sparks 905 Southern Way Sparks, NV 89431 1-800-884-4MMC (PST

MicroMetl Longview 201 Kodak Blvd. Longview, TX 75602 1 002 240

Video Here

How To Read A

CE

LE DUCT FRICTION LOSS CALCU

S

OR

ETER at arrow. Read VOLUME and FRICTION LOSS at known velocity.

B. GENERAL

 The routing and length of flexible duct, the number of degrees of each bend and the amount of sag allowed between support joints will have serious effects on system performance due to the increased resistance each introduces. Use the minimum length of flexible duct to make connections. It is not recommended that excess lengths of ducts be installed to allow for possible future relocations of air terminal devices.

Keynotes from the installation instructions No runs longer then 14' Bends and turns will add increased pressure Support every 4' - max $\frac{1}{2}$ " sag per a foot No more then a 2" inch sag between supports UV lights will break down the inner liner

Recommendation from the instructions Use the minimum length to make connections

A. CODE REFERENCE

 The "authority having jurisdiction" should be referenced to determine what law, ordinance or code shall apply in the use of flexible "Air Ducts" and "Air Connectors."

2. Air Ducts, identified by a rectangular shape listing mark, have no installed length limitation. Air Connectors, identified by a round shape listing mark, shall not be installed in lengths greater than 14 feet.

B. GENERAL

1. The routing and length of flexible duct, the number of degrees of each bend and the amount of sag allowed between support joints will have serious effects on system performance due to the increased resistance each introduces. Use the minimum length of flexible duct to make connections. It is not recommended that excess lengths of ducts be installed to allow for possible future relocations of air terminal devices.

This product is for indoor use only. Do not install product where exposure to direct sunlight can occur. Prolonged exposure to sunlight may cause degradation of vapor barrier.

The inner core may degrade if the duct is positioned near a bio-treatment lamp (UV emitter) installed within the HVAC system

4. Terminal devices shall be supported independently of the flexible duct.
5. Repair torn or damaged vapor barrier/jacket with duct tape listed and width to prevent any restriction of the internal diameter of the duct when the labeled to Standard UL 181B. If internal core is penetrated, replace flexible will the material contacting the flexible duct be less than 1-1/2 inch wide.
Will the material contacting the flexible duct be less than 1-1/2 inch wide.
See Standard UL 181B.

C. INSTALLATION

 Avoid bending ducts across sharp corners or incidental contact with metal er's installation instructions. fixtures, pipes or conduits. Radius at center line shall not be less than one duct diameter.

etc.) that is above the recommended flexible duct use temperature.

D. CONNECTING, JOINING AND SPLICING FLEXIBLE DUCT

1. All connections, joints and splices shall be made in accordance with the manu facturer's installation instructions.

2. All tapes, mastics, and non-metallic fasteners (plastic clamps) used for field installation of flexible ducts shall be listed and labeled to Standard UL 181B – Closure Systems for use with Flexible Air Ducts and Air Connectors. Non-metallic fasteners are limited to 6 inch w.g. maximum positive pressure. 3. Sheet metal collars to which the flexible ducts are flatched shall be a minimum of two

inches in length and shall be beaded. 4. Sheet metal sleeves used for joining two sections of flexible duct shall be a min imum of 4 inches in length and shall be beaded on both ends.

E. SUPPORTING FLEXIBLE DUCT

GUIDELINES FOR INSTALLING FLEXIBLE DUCT

SAG

 Flexible duct shall be supported at manufacturer's recommended intervals, but at no greater distance than four feet. Maximum permissible sag is 1/2 inch per foot of soacine between supports.
NOTE: Factory-made air ducts may not be used for vertical risers in air duct
NOTE: Factory-made air ducts may not be used for vertical risers.

of spacing between supports. A connection to rigid ducting or equipment shall be considered a support joint.

and after the bend approximately one duct diameter distance from the center line of the bend.

ct shall be of sufficient F. INSTALLATION RESTRICTIONS AND USE LIMITATIONS of the duct when the material. In no case There are specific restrictions and limitations related to the use of flexible duct

There are specific restrictions and limitations related to the use of flexible duct. Some are due to NFPA Standards, model codes and various statellocal codes. Others are due to end use performance where the product was not designed for that specific use. Some, but not all inclusive, are as follows:

 Cannot be used for vertical risers serving more than two stories in height when conformance to NFPA 90A or 90B is required.

2. Cannot be used in systems with entering air temperature higher than 250° F [121° C]

3. Must be installed in accordance with conditions of listing.

When installed in a fire-rated floor/roof ceiling assembly, ducts shall conform with the design of the tested fire-resistive assembly.

 Should be interrupted at the immediate area of operation of electric, fossil fuel or solar energy collection heat sources to meet listed equipment clearances specified.

6. Air connectors (does not apply to air ducts) shall not be installed in lengths greater than 14 feet [4.3 m] for any given run; shall not pass through any wall, partition or enclosure of a vertical shaft with a 1 hour or more fire resistive rating; shall not pass through floors.

7. Should not penetrate walls where fire dampers are required

 Should not be used outdoors unless specifically designed to withstand exposure to direct sunlight and the weathering elements.

9. Should not be used to vent appliances for cooking, heating and clothes drying unless approved and recommended by the appliance manufacturer.

 Should not be installed in concrete, buried below grade or in contact with the ground.

 Flexible ducts may rest on ceiling joists or truss supports. A maximum spacing between supports shall not exceed the maximum spacing per manufacturth metal er's installation instructions.

4. Support the duct between a metal connection and a bend by allowing the duct to extend straight for a few inches before making the bend. This will avoid possible damage of the flexible duct by the edge of the sheet metal collar.

CORRECTLY USING THE DUCT CALCULATOR

What we need to know before we pick up the Duct Calculator!

- Required room CFM to satisfy the load
- Available Blower (Static) Pressure @ Design CFM
- Accessory / Component Air Side Pressure Drops
- Total (Static) Pressure <u>Available</u> to Move the Air thru the Duct System
 - (This is different than Blower (Static) Pressure)
- Total Feet of Duct Work Resistance
 - Equivalent Feet of Fittings (Manual "D" / Appendix 3)
 - Straight Runs of Duct
- Available Static / 100 Equivalent Feet

CORRECTLY USING THE DUCT CALCULATOR

What we need to know before we pick up the Duct Calculator!

- Required room CFM to satisfy the load
- Available Blower (Static) Pressure @ Design CFM
- Accessory / Component Air Side Pressure Drops
- Total (Static) Pressure <u>Available</u> to Move the Air thru the Duct System
 - (This is different than Blower (Static) Pressure)
- Total Feet of Duct Work Resistance
 - Equivalent Feet of Fittings (Manual "D" / Appendix 3)
 - Straight Runs of Duct
- Available Static / 100 Equivalent Feet

DATA AND INFORMATION GATHERING AND ANALYSIS

EXAMPLE / Gas Furnace Ranch Over Crawl Space

> Cooling Load = 21,331 BTUH Sensible heat 6,399 BTUH Latent heat 27,730 BTUH Total capacity

> > 1085 CFM of Airflow

Heating Load = 39,445 BTUH Total

We will be using the 1085 CFM as our "Design Airflow" and a 70,000 BTUH 80% Furnace!

HEAT LOAD CALCULATION

Any heat load calculation software, always consult the instructions of your software supplier to ensure correct data entry.

l	Whole House Worksneet – New Construction																									
	Customer's Name	Addre	155	_1	98	96	Yο	rke	shir	e I	3lva	<i>t</i> .														
1	_{City} Little R	nsas	2 Zip					_1	eler	ohor	ne l	Num	be	r												
	WINTER: Inside	Design	Temp	70	°F	Outside I	Desig	in Temp		20)		°F÷	= He	eati	ngʻ	Tem	p i	Diffe	rend	ce_	5	0	°F		
	SUMMER: Outs	ide Desi	gn Ten	np9	9 <u>5 </u> •I	F—Inside	Desi	ign Temp	-	75			۴F	= C	ool	ing	Ten	np	Diffe	ren	ce	2	0	۴F		
	HEAT	ING				co	MMQ	ON DA	N DATA SECTION									_		1	co	OLING	LING			
	BTUH LOSS	FACTO	NG DR			SU	BJE	CT							:	SQ.	FT.			F/	CTO	ig R	BTU	H GAIN		
		FRO	ut .	GROSS WALL											1	52	0			F	RON	1				
	1135	TABLE	E	DOOF	RS & WIN	IDOWS (Table	A or B)						1		21	3			TA	BLE	E	5	5384		
	915	0.70	0	NETV	VALL									⊢	1	30	77		-		1.7		2	222		
	936	0.4	в	CEILI	NG									1	95	0		\pm		2.1		4	4095			
												1					_									
	1014	0.5	2	FLOO	RS				No.					1	95	60	_		(0.8		15	1560			
	Buhr =	Table	10 D	x 10 x	c 1.1/60	x	198 -2,1		(Cu.	FL)		х	1	.1/8	50	х	Δ	T :	(Tab	e D	= "	Ruhr			
I	2860 =	1.0)	x 0.18	333 x		1560	00	1	56	00)	Х	_ 0	0.01	833	33 x	2	20 :	ζ	0.	4	= 22	= 2288		
I	6860			SUB-	TOTAL B	TUH LOS	ar 10°F)	_					⊢			-	-	_								
	x 5			ADJU	ADJUSTMENT FACTOR (Table C)																		_			
	34300			TOTAL	BTUHI	.OSS		(Assume 2 parante														1900				
				PEOP	PEOPLE 6 X 300 BTUH GAIN perbedroom										_			_	+				12	1800		
				APPL	ANCES	BTUH													+				1	19540		
	445			SUB-	TOTAL B	TUH GAIN	N (roo	com sensible only)								-			+				10	× 1.15		
	× 1.15			DUCT	DUCT LOSS/GAIN FACTOR (Table F)								⊢				_			-	4	×	21331			
				SUB-	TOTAL B	TUH (Sen	sible	Gain)	n) 								+	-	_			21001				
k	30445			MOIS	TURE R	TOTAL B	(SUD t	total x 1	.3)) AIN								+				27	730			
	39445 TOTAL BTUH LOSS/GAIN 2/1/30 TABLE A-HEATING-DOORS & WOOD FRAME WINDOWS (PER 10°F) TABLE B - COOLING - DOORS & WINDOWS TABLE B - COOLING - DOORS & WINDOWS For sliding glass doors - use factors for the same type window construction Factors assume windows have inside sheding by draperties or vanetian blinds and sliding glass																									
	Window & Door Types	Wood	Frames TIM	Metal	z Area		SINGLE GLASS						DOUBLE GLASS T						GLA	ss						
	Single Pana Clear	9.90 10.45 11.55								TEMP. DIFF. TEMP. DIFF.							TE	MP.	DIF	ξ.	x Area	= Btuh Gain				
	With Storm	4.75	5.25	6.50			D	irection	ection 15° 20° 25° 30° 35'						20*	25°	30° 3	5°	15" 20	25	30°	35"				
	Double Pane Clear	ouble Pane (5.51) 6.09 7.25 171 942							18	22	26	30	34	14	16	18	20 2	22	11 1	2 13	14	15	56	896		
	With Storm Triple Pane	3.41	3.85	4.90			N	E & NW	37	41	45	49	53	31	33	35	37 2	19	26 2	7 21	1 29	30		1		
	Clear	3.60	4.08	3,40				E&W	52	56	60	64	68	44	46	48	50 5	52	38 3	9 40	41	42	55	2530		
					-	-	- • •																			

CORRECTLY USING THE DUCT CALCULATOR

What we need to know before we pick up the Duct Calculator!

- Required room CFM's to satisfy the load = 1085 CFM
- Available Blower (Static) Pressure @ Design CFM <u>Gas Furnace</u>
 - Determine Fan Blower Performance Static Capability at a given CFM
- Accessory / Component Air Side Pressure Drops
- Total (Static) Pressure <u>Available</u> to Move the Air thru the Duct System
 - (This is different than Blower (Static) Pressure)
- Total Feet of Duct Work Resistance
 - Equivalent Feet of Fittings (Manual "D" / Appendix 3)
 - Straight Runs of Duct
- Available Static / 100 Equivalent Feet

DETERMINE BLOWER PERFORMANCE

1st:

Let's look at the blower Performance table

- Normally found in "Product Data or Installation Instructions"

- Looking for 1085 CFM

DETERMINE BLOWER PERFORMANCE

	Euroaco	wire	Eurotion	Test Airflow Delivery @ Various External Static Pressures															
	Turnace	Color	Function	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1						
		Gray	Cooling. Do not use for heating.	1230	1190	1155	1120	1080	1045	1010	975	935	895						
		Yellow	Alt Cooling or alt Heating	980	945	920	890	855	815	770	735	690	645						
	045E14-12	Orange	Alt Cooling or alt Heating	770	720	685	640	600	560	520	475	430	385						
		Blue	Heating or alt Cooling	710	660	620	580	540	490	455	415	375	335						
		Red	Alt Cooling. Do not use for heating.	600	540	500	455	415	385	345	305	235	-						
		Gray	Cooling. Do not use for heating.	1370	1335	1295	1255	1215	1175	1135	1095	1055	1020		5000				
		Yellow	Alt Cooling or alt Heating	1130	1085	1040	995	955	910	865	825	780	730		3820	JUA			
	045E17-12	Orange	Alt Cooling or alt Heating	930	885	835	795	745	700	655	600	545	495						
		Blue	Heating or alt Cooling	760	720	670	625	580	515	460	410	355	300						
		Gray	Cooling. Do not use for heating.	1205	1170	1143	1105	1070	1005	1000	000	025	005						
		Blue	Heating or alt Cooling	1095	1060	1030	880	000	925	885	840	800	735			Cray anod t	an		
l at's look at this furnace	070E14-12	Yellow	Alt Cooling or alt Heating	920	880	845	805	765	730	685	620	560	510			Gray speed t	ap		
Let 3 look at this furnace		Orange	Alt Cooling. Do not use for heating.	715	650	610	575	520	465	410	380	305	245			,	·		
		Red	Alt Cooling. Do not use for heating.	635	490	445	375	315	270	205	230	190	140						
		Gray	Cooling. Do not use for heating.	1185	1140	1095	105	1005	960	015	865	820	780		_				
		Yellow	Alt Cooling or alt Heating	1000	940	885	850	800	750	695	650	600	555			Cray anadtan			
	070E17-12	Blue	Heating or alt Cooling	990	935	895	845	790	740	690	640	590	535		G				
		Orange	Alt Cooling or alt Heating	855	775	720	660	605	560	495	435	385	335			7 1			
		Red	Alt Cooling. Do not use for heating.	860	685	515	445	385	340	275	205	-	-						
		Gray	Cooling. Do not use for heating.	1735	1685	1640	1595	1545	1495	1450	1405	1000	1310						
		Yellow	Alt Cooling or alt Heating	1480	1435	1395	1340	1290	1240	1190	1135	1085	1012						
	070E21-16	Blue	Heating or alt Cooling	1315	1275	1225	1180	1135	1085	1030	975	015	860						
		Orange	Alt Cooling or alt Heating	1135	1080	1030	985	935	885	835	770	705	645		Yellow speed tap				
		Red	Alt Cooling. Do not use for heating.	980	930	875	820	775	715	665	595	530	455						
				1000	1000		1010	1010	1100	1105	1000	1005							
		Yellow	Alt Cooling or alt Heating	1295	1255	1220	1185	1140	1100	1055	1005	955	815						
	090E17-14	Blue	Heating or alt Cooling	1220	1185	1150	1105	1065	1025	975	915	840	740						
		Orange	Alt Cooling or alt Heating	1030	985	940	900	845	790	715	655	590	535						
		Red	Alt Cooling. Do not use for heating.	945	905	855	800	750	670	600	540	490	435						
		Gray	Cooling. Do not use for heating.	1625	1580	1535	1490	1445	1395	1340	1260	1135	995						
		Yellow	Alt Cooling or alt Heating	1425	1380	1335	1290	1235	1185	1125	1075	1020	640						
	090E21-16	Blue	Heating or alt Cooling	1440	1395	1350	1305	1255	1200	1145	1090	1040	950						
		Orange	Alt Cooling or alt Heating	1260	1210	1160	1105	1050	990	935	880	820	755						
		Red	Alt Cooling. Do not use for heating.	1095	1040	980	905	845	780	720	650	585	520						
		Gray	Cooling. Do not use for heating.	2180	2130	2080	2030	1980	1925	1870	1805	1745	1680						
		Yellow	Alt Cooling or alt Heating	1900	1845	1795	1740	1685	1635	1570	1500	1435	1375						
	090E21-20	Blue	Heating or alt Cooling	1685	1620	1565	1505	1455	1385	1320	1260	1200	1140						
		Orange	Alt Cooling or alt Heating	1390	1315	1240	1175	1095	1030	970	900	825	760						
		Red	Alt Cooling. Do not use for heating.	1240	1155	1075	990	915	835	765	690	615	555						
Ξ F		Gray	Cooling. Do not use for heating.	2190	2135	2075	2015	1960	1900	1835	1775	1705	1630						
	•																		

DETERMINE BLOWER PERFORMANCE

Select the 21-inch-wide furnace with the Greater Static Pressure Capability @ 1085 CFM

* Med-Hi Speed Tap Data Shows 1085 CFM @ 0.90" w.g.

* Med Speed Tap Data Shows 1085 CFM @ 0.60" w.g.

We will 1st try the 1085 CFM @ 0.90" w.g.

CORRECTLY USING THE DUCT CALCULATOR

What we need to know before we pick up the Duct Calculator!

- Required room CFM's to satisfy the load = 1085 CFM
- Available Blower (Static) Pressure @ Design CFM = .90"wc @ 1085 CFM
- Accessory / Component Air Side Pressure Drops
 - Cooling Coil, Diffusers, Dampers, Airside Accessories.
- Total (Static) Pressure <u>Available</u> to Move the Air thru the Duct System
 - (This is different than Blower (Static) Pressure)
- Total Feet of Duct Work Resistance
 - Equivalent Feet of Fittings (Manual "D" / Appendix 3)
 - Straight Runs of Duct
- Available Static / 100 Equivalent Feet

- Available Static @ Furnace = 0.90"
- Pressure Drops

Cooling Coil 0.??" Supply Grill 0.03" per Manual "D" Return Grill 0.03" per Manual "D" Damper(Balancing) 0.03" per Manual "D" High Eff Filter 0.??+" 0.??" => Totals = -0.??" Available To Deliver Air = 0.??"

DETERMINE COIL PRESSURE DROP

соп	L STA	ATIC	PRES	SSUR	E DR	OP (i	n. w.o	:.) R-	410A	and I	R-22	RÐFI	RIGE	RAN	ГS				
UNIT						_		_	Star	ndard C	FM		_						
SIZE	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200
				10 100	0.050					Dry									
1814	0.078	0.114	0.156	0.198	0.253														
			10 100	10.010						Wet									
	0.096	0.138	0.183	0.213	0.277					0									
1	0.040	0.000	0.000	0.400	0.400					Dry									
1917	0.042	0.060	0.080	0.102	0.128					Wet									
1	0.055	0.076	0 104	0 127	0 158		<u> </u>	<u> </u>		Wet			<u> </u>				<u> </u>	<u> </u>	
⊢	0.055	0.070	0.104	0.127	0.150					Dov									
1	0.070	0 103	0 143	0 182	0 233	0 200	0.354	<u> </u>		Diy									
2414	0.070	0.100	0.140	0.102	0.200	0.200	0.004			Wet								<u> </u>	L
1	0.089	0.128	0.171	0.214	0.269	0.336	0.413		<u> </u>										
										Drv									
	0.048	0.068	0.090	0.112	0.140	0.170	0.203		I										
2417										Wet									
1	0.064	0.091	0.122	0.150	0.188	0.224	0.263												
										Dry									
2014	0.065	0.097	0.135	0.173	0.223	0.278	0.339	0.405	0.478										
3014										Wet									
	0.078	0.114	0.160	0.206	0.260	0.321	0.388	0.461	0.540										
										Dry									
3017	0.042	0.060	0.080	0.102	0.128	0.157	0.188	0.222	0.259										
										Wet									
	0.055	0.076	0.104	0.127	0.158	0.190	0.225	0.266	0.309										
	0.004	0.040	0.000	0.000	0 105	0 100	0.450	0.400	0.000	Dry									
3117	0.031	0.046	0.063	0.083	0.105	0.130	0.156	0.193	0.230	Mat									
1	0.020	0.056	0.075	0.007	0 101	0 140	0 170	0.010	0.240	wet							<u> </u>	<u> </u>	<u> </u>
⊢	0.039	0.050	0.075	0.097	0.121	0.149	0.179	0.212	0.249	Day									
3617	0.043	0.061	0.082	0 103	0 128	0 157	0 180	0 221	0.250	0.200	0.341							<u> </u>	
T3617	0.040	0.001	0.002	0.100	0.120	0.157	0.108	0.221	0.200	Wet	0.041								L
10017	0.056	0.079	0.107	0.133	0.166	0.200	0.236	0.276	0.315	0.361	0.413								
	0.000	0.070	0.101	0.100	0.100	0.200	0.200	0.270	0.010	Drv	0.110								
	0.035	0.048	0.062	0.076	0.093	0.111	0.132	0.153	0.177	0.201	0.228								
3621										Wet									<u> </u>
1	0.049	0.066	0.085	0.100	0.122	0.144	0.171	0.192	0.217	0.245	0.276								
										Dry									
0717	0.025	0.038	0.054	0.072	0.093	0.117	0.143	0.171	0.205	0.233	0.273								
3/1/										Wet									
1	0.030	0.044	0.061	0.079	0.103	0.125	0.154	0.182	0.216	0.251	0.288								

CNPV

DETERMINE COIL PRESSURE DROP

We will use the 3621 coil to match the furnace 1100 CFM @ 0.19" w.g.

Pressure Drop across coil is 0.19" w.g.

Key Data and Information!!

- Available Static @ Furnace = 0.90"
- Pressure Drops
 - <mark>0.19"</mark> Cooling Coil Supply Grill 0.03" Return Grill 0.03" Damper (Balancing) 0.03" High Eff Filter NONE **0.28**" => Totals = -0.28" **Available To Deliver Air** and Design Ductwork 0.62"

DETERMINE FILTER PRESSURE DROP

PRESSURE DROP AT VARIOUS AIRFLOWS (CLEAN)

Airflow (CFM)	FACTORY SUPPLIED FURNACE/FAN COIL FILTER	EXPXXFIL0016	EXPXXFIL0020							
	Resistance (inches of water) (Clean filter)									
600	0.015	0.045	0.025							
800	0.020	0.070	0.045							
1000	0.030	0.110	0.075							
1200	0.035	0.150	0.100							
1400	0.045	0.210	0.130							
1600	0.055	0.250	0.160							
1800	0.062	—	0.200							
2000	0.070	_	0.220							
2200		_	_							

NOTE: When applying the EZ Flex, attention must be given to the duct and system design because all these components affect system static pressure. The EZ Flex has a higher static pressure drop than the typical factory supplied furnace and/or fan coil filter (as shown above), but is designed to ensure proper system efficiency and reliability when applied to a properly designed duct system and properly sized HVAC equipment.

Using Interpolation, @ 1100 CFM,

Pressure Drop across filter will be 0.13" w.g.

More Key Data

and Information!!

- Available Static @ Furnace = 0.90"
- Pressure Drops
 - Cooling Coil 0.19" Supply Grill 0.03" Return Grill 0.03" Damper (Balancing) 0.03" <mark>0.13"</mark> High Eff Filter **0.41**" => Totals = -0.41" **Available To Deliver Air** and Design Ductwork 0.49'

Mire

Now let's look at this furnace

We are changing from a 21" wide furnace to a 14" wide furnace

- 1	Furnace	Load	Eurotion		Test Ai	rflow D	elivery	@ Vario	us Exte	ernal St	atic Pre	ssures									
	Turnave	Color	Function	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1								
1		Gray	Cooling. Do not use for heating.	1230	1190	1155	1120	1080	1045	1010	975	935	895								
ŻΙ		Yellow	Alt Cooling or alt Heating	980	945	920	890	855	815	770	735	690	645								
1	045E14-12	Orange	Alt Cooling or alt Heating	770	720	685	640	600	560	520	475	430	385								
1		Blue	Heating or alt Cooling	710	660	620	580	540	490	455	415	375	335								
		Red	Alt Cooling. Do not use for heating.	600	540	500	455	415	385	345	305	235	-								
1		Gray	Cooling. Do not use for heating.	1370	1335	1295	1255	1215	1175	1135	1095	1055	1020		50000						
1		Yellow	Alt Cooling or alt Heating	1130	1085	1040	995	955	910	865	825	780	730		JOSCUA						
1	045E17-12	Orange	Alt Cooling or alt Heating	930	885	835	795	745	700	655	600	545	495								
1		Blue	Heating or alt Cooling	760	720	670	625	580	515	460	410	355	300								
		Gray	Cooling. Do not use for heating.	1205	1170	1143	1105	1070	11.00	1000	900	920	600	_							
		Blue	Heating or alt Cooling	1095	1060	1030	990	900	925	885	840	800	735				Cray anadtan				
	070E14-12	Yellow	Alt Cooling or alt Heating	920	880	845	805	765	730	685	620	560	510				Gray speed lap				
		Orange	Alt Cooling. Do not use for heating.	715	650	610	575	520	465	410	380	305	245			เ	7 1				
		Red	Alt Cooling. Do not use for heating.	635	490	445	375	315	270	205	230	190	140								
		Gray	Cooling. Do not use for heating.	1185	1140	1095	1055	1005	960	915	865	820	780								
		Yellow	Alt Cooling or alt Heating	1000	940	895	850	800	750	695	650	600	555								
	070E17-12	Blue	Heating or alt Cooling	990	935	895	845	790	740	690	640	590	535								
		Orange	Alt Cooling or alt Heating	855	775	720	660	605	560	495	435	385	335								
		Red	Alt Cooling, Do not use for heating,	860	685	515	445	385	340	275	205	-	-								
		Grav	Cooling, Do not use for heating,	1735	1685	1640	1595	1545	1495	1450	1405	1000	1310								
		Yellow	Alt Cooling or alt Heating	1480	1435	1395	1340	1290	1240	1190	1135	1085	1032								
	070E21-16	Blue	Heating or alt Cooling	1315	1275	1225	1180	1135	1085	1030	975	015	660								
	010221 10	Orange	Alt Cooling or alt Heating	1135	1080	1030	985	935	885	835	770	705	645			/~11	ow chood ton				
		Red	Alt Cooling, Do not use for heating,	980	930	875	820	775	715	665	595	530	455			EII	ow speed lap				
Ľ					1000			1010									· · · ·				
		Yellow	Alt Cooling or alt Heating	1295	1255	1220	1185	1140	1100	1055	1005	955	815								
	090E17-14	Blue	Heating or alt Cooling	1220	1185	1150	1105	1065	1025	975	915	840	740								
		Orange	Alt Cooling or alt Heating	1030	985	940	900	845	790	715	655	590	535								
		Red	Alt Cooling. Do not use for heating.	945	905	855	800	750	670	600	540	490	435								
ł		Grav	Cooling. Do not use for heating.	1625	1580	1535	1490	1445	1395	1340	1260	1135	995								
		Yellow	Alt Cooling or alt Heating	1425	1380	1335	1290	1235	1185	1125	1075	1020	640								
	090E21-16	Blue	Heating or alt Cooling	1440	1395	1350	1305	1255	1200	1145	1090	1040	950								
		Orange	Alt Cooling or alt Heating	1260	1210	1160	1105	1050	990	935	880	820	755								
		Red	Alt Cooling. Do not use for heating.	1095	1040	980	905	845	780	720	650	585	520								
ł		Gray	Cooling. Do not use for heating.	2180	2130	2080	2030	1980	1925	1870	1805	1745	1680								
		Yellow	Alt Cooling or alt Heating	1900	1845	1795	1740	1685	1635	1570	1500	1435	1375								
	090E21-20	Blue	Heating or alt Cooling	1685	1620	1565	1505	1455	1385	1320	1260	1200	1140								
		Orange	Alt Cooling or alt Heating	1390	1315	1240	1175	1095	1030	970	900	825	760								
1		Bed	Alt Cooling, Do not use for heating	1240	1155	1075	990	915	835	765	690	615	555								

DETERMINE COIL PRESSURE DROP

COIL STATIC PRESSURE DROP (in. w.c.) R-410A and R-22 REFRIGERANTS

CNPV

We are changing from a 21" wide furnace to a 14" wide furnace.

Why not have the coil match the width of the furnace?

We need to get new static pressure drop ratings.

UNIT									Star	ndard C	FM								
SIZE	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200
					•					Dry									
1014	0.078	0.114	0.156	0.198	0.253														
1014					•		·			Wet							·		
	0.096	0.138	0.183	0.213	0.277														
										Dry									
1017	0.042	0.060	0.080	0.102	0.128														
1017										Wet									
	0.055	0.076	0.104	0.127	0.158														
										Dry									
2414	0.070	0.103	0.143	0.182	0.233	0.290	0.354												
	0.080	0 100	0 171	0.014	0.000	0.000	0 412			Wet									
	0.069	0.120	0.171	0.214	0.209	0.330	0.413			Dov									
	0.048	0.068	0.000	0 112	0 140	0 170	0 203			Diy									
2417	0.040	0.000	0.000	0.112	0.140	0.170	0.200			Wet									L
	0.064	0.091	0.122	0.150	0.188	0.224	0.263												
	0.001	0.001	U.TEL	0.100	0.100	U.LL I	0.200			Dry									
	0.065	0.097	0.135	0.173	0.223	0.278	0.339	0.405	0.478										
3014						-				Wat									<u> </u>
	0.078	0.114	0.160	0.206	0.260	0.321	0.388	0.461	0.540										
										Dry									
3017	0.042	0.060	0.080	0.102	0.128	0.157	0.188	0.222	0.259										
0017		-	-	_	-			-		Wet					_	_			-
	0.055	0.076	0.104	0.127	0.158	0.190	0.225	0.266	0.309										
										Dry									
3117	0.031	0.046	0.063	0.083	0.105	0.130	0.156	0.193	0.230	Mat									
	0.020	0.058	0.075	0.007	0 101	0.140	0 170	0.010	0.240	wet									<u> </u>
	0.039	0.050	0.075	0.097	0.121	0.149	0.178	0.212	0.248	Dov									L
3617	0.043	0.061	0.082	0 103	0.128	0 157	0 189	0.221	0.259	0.299	0.341								<u> </u>
T3617	0.040	0.001	0.002	0.100	0.120	0.107	0.100	0.221	0.200	Wet	0.041								L
	0.056	0.079	0.107	0.133	0.166	0.200	0.236	0.276	0.315	0.361	0.413								
										Dry									<u> </u>
0004	0.035	0.048	0.062	0.076	0.093	0.111	0.132	0.153	0.177	0.201	0.228								
3621				· · · · ·			· · · ·			Wet							· · · ·		
	0.049	0.066	0.085	0.100	0.122	0.144	0.171	0.192	0.217	0.245	0.276								
										Dry									
3717	0.025	0.038	0.054	0.072	0.093	0.117	0.143	0.171	0.205	0.233	0.273								
										Wet									
	0.030	0.044	0.061	0.079	0.103	0.125	0.154	0.182	0.216	0.251	0.288								
										Dest									_

CE

- Available Static @ Furnace = 0.50"
- Pressure Drops
 - **0.46**" Cooling Coil Supply Grill 0.03" Return Grill 0.03" Damper (Balancing) 0.03" High Eff Filter NONE **0.55**" => Totals = -0.55" **Available To Deliver Air** and Design Ductwork = -.05"

- Available Static @ Furnace = 0.50"
- Pressure Drops
 - <mark>0.46</mark>" **Cooling Coil** Supply Grill 0.03" Return Grill 0.03" Damper (Balancing) 0.03" <mark>0.13"</mark> High Eff Filter **0.68**" => Totals = -0.68" **Available To Deliver Air** and Design Ductwork -.18"

DETERMINE COIL PRESSURE DROP

× /

We only change the coil From a 14" coil to a 17" coil

COII	STA	TIC	PRES	SSUR	E DR	OP (i	n. w.c	:.) R-	410A	and I	R-22	REFI	NGE	RAN	ГS				
UNIT									Star	ndard C	FM								
SIZE	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200
										Dry									
1814	0.078	0.114	0.156	0.198	0.253														
1014										Wet	-								
	0.096	0.138	0.183	0.213	0.277														
										Dry									
1917	0.042	0.060	0.080	0.102	0.128					14/-1									
	0.055	0.070	0.404	0.407	0.450					wet									
	0.055	0.076	0.104	0.127	0.158					Dec									
	0.070	0.400	0.4.40	0.400	0.000	0.000	0.054			Dry									
2414	0.070	0.103	0.143	0.182	0.233	0.290	0.354			Mat									
	0.080	0 128	0 171	0.214	0.260	0.226	0.412			vvet									
	0.069	0.120	0.171	0.214	0.209	0.330	0.413			Dev									
	0.048	0.068	0.000	0 112	0 140	0 170	0 203			Diy									
2417	0.040	0.000	0.000	0.112	0.140	0.170	0.200			Wet									
	0.064	0.091	0.122	0.150	0.188	0.224	0.263												1
	0.004	0.001	0.122	0.100	0.100	0.224	0.200			Drv									
3014	0.065	0.097	0.135	0.173	0.223	0.278	0.339	0.405	0.478										
3014										Wet									
	0.078	0.114	0.160	0.206	0.260	0.321	0.388	0.461	0.540										
										Dry									
2017	0.042	0.060	0.080	0.102	0.128	0.157	0.188	0.222	0.259										
3017					•				· · · · ·	Wat		·		· · · · ·					
	0.055	0.076	0.104	0.127	0.158	0.190	0.225	0.266	0.309										
										Dry									
3117	0.031	0.046	0.063	0.083	0.105	0.130	0.156	0.193	0.230										
5117										Wet			_						
	0.039	0.056	0.075	0.097	0.121	0.149	0.179	0.212	0.249										
										Dry									
3617	0.043	0.061	0.082	0.103	0.128	0.157	0.189	0.221	0.259	0.299	0.341								
T3617										Wet					-				
	0.056	0.079	0.107	0.133	0.166	0.200	0.236	0.276	0.315	0.361	0.413								
	0.005	0.010		0.070	0.000		0 100			Dry	0.000								
3621	0.035	0.048	0.062	0.076	0.093	0.111	0.132	0.153	0.177	0.201	0.228								
	0.040	0.000	0.005	0.400	0.400	0 1 1 1	0.474	0.400	0.047	Wet	0.070								
	0.049	0.066	0.085	0.100	0.122	0.144	0.171	0.192	0.217	0.245	0.276								
	0.025	0.039	0.054	0.072	0.003	0 117	0 142	0 171	0.205	0.232	0.272	<u> </u>							
3717	0.020	0.000	0.004	0.072	0.083	0.117	0.140	0.171	0.203	Wet	0.213					I	I		I
										A A OL									

- Available Static @ Furnace = 0.50"
- Pressure Drops
 - 0.26" Cooling Coil Supply Grill 0.03" Return Grill 0.03" Damper (Balancing) 0.03" High Eff Filter NONE **0.35**" => Totals = -0.35" **Available To Deliver Air** and Design Ductwork .15"

DATA AND INFORMATION GATHERING AND ANALYSIS

EXAMPLE / Fan coil / Air handler Ranch Over Crawl Space

> Cooling Load = 21,331 BTUH Sensible heat 6,399 BTUH Latent heat 27,730 BTUH Total capacity

> > 1085 CFM of Airflow

Heating Load = 39,445 BTUH Auxiliary Heater = 7.68 KW

We will be using the 1085 CFM as our "Design Airflow"!

CORRECTLY USING THE DUCT CALCULATOR

What we need to know before we pick up the Duct Calculator!

- Required room CFM to satisfy the load = 1085 CFM
- Available Blower (Static) Pressure @ Design CFM Fan Coil/Air Handler
 - Determine Fan Blower Performance Static Capability at a given CFM
- Accessory / Component Air Side Pressure Drops
- Total (Static) Pressure <u>Available</u> to Move the Air thru the Duct System
 - (This is different than Blower (Static) Pressure)
- Total Feet of Duct Work Resistance
 - Equivalent Feet of Fittings (Manual "D" / Appendix 3)
 - Straight Runs of Duct
- Available Static / 100 Equivalent Feet

1st:

Let's look at the blower Performance table - Normally found in "Product Data" Looking for 1085 CFM

FB4C AIRFLOW PERFORMANCE (CFM)

MODEL & SIZE	BLOWER SPEED	0.10	0.20	0.30	0.40	0.50	0.60	1		
	Tap 5	767	739	702	669	620	565	1		
	Tap 4	614	569	534	486	436	398			
FB4C 018	Tap 3	701	660	616	581	537	499			
	Tap 2	614	569	534	486	436	398			
	Tap 1	614	569	534	486	436	398			
	Tap 5	969	936	892	835	763	676	1		
	Tap 4	826	795	766	743	706	660			
FB4C 024	Tap 3	826	795	766	743	706	660			
	Tap 2	701	660	616	581	537	499			
	Tap 1	617	592	552	507	472	420			
	Tap 5	1108	1090	1065	1034	1009	974			1
	Tap 4	1026	1000	969	938	899	865		Speed tap 5	
FB4C 030	Tap 3	1026	1000	969	938	899	865			J
	Tap 2	909	873	842	799	762	724			
	Tap 1	825	795	757	722	674	634			
	Tap 5	1301	1276	1245	1218	1176	1121			
	Tap 4	1227	1191	1169	1143	1105	1074			
FB4C 036	Tap 3	1227	1191	1169	1143	1105	1074		Speed tap 4	
	Tap 2	1087	1062	1030	1001	966	930	L		
	Tap 1	1026	1000	969	938	899	865			
	Tap 5	1560	1544	1507	1464	1424	1358	1.		
	Tap 4	1419	1397	1358	1320	1279	1239			
FB4C 042	Tap 3	1419	1397	1358	1320	1279	1239		Key Data	anc
	Tap 2	1249	1220	1184	1142	1093	1052		ICy Data	III
	Tap 1	1242	1205	1158	1110	1069	1026			

Information!!

MODEL	AIRFLOW	AVAILABLE STATIC PRESSURE
	525 CFM	1.00 in wc
ľ	700 CFM	1.00 in wc
FE4ANF002	875 CFM	1.00 in wc
L L	1050 CFM	0.80 in wc
L L	1200 CFM	0.60 in wc
	700 CFM	1.00 in wc
L L	875 CFM	1.00 in ws
FE4AN(B,F)003	1050 CFM	1.00 in wc
Г	1225 CFM	1.00 in wc
Г	1400 CFM	0.80 in wc
	875 CFM	1.00 in wc
Г	1050 CFM	1.00 in wc
FE4AN(B,F)005	1225 CFM	1.00 in wc
L L	1400 CFM	1.00 in wc
	1600 CFM	0.50 in wc
	1050 CFM	1.00 in wc
Γ	1225 CFM	1.00 in wc
FE4ANB006	1400 CFM	1.00 in wc
L L	1750 CFM	1.00 in wc
L L	2000 CFM	0.60 in wc
	700 CFM	1.00 in wc
L L	875 CFM	1.00 in wc
FE5ANB004	1050 CFM	1.00 in wc
L L	1225 CFM	1.00 in wc
L L	1400 CFM	1.00 in wc

MAXIMUM STATIC TABLE

CORRECTLY USING THE DUCT CALCULATOR

What we need to know before we pick up the Duct Calculator!

- Required room CFM's to satisfy the load = 1085 CFM
- Available Blower (Static) Pressure @ Design CFM = 0.60" w.g. @ 1085 CFM or 1.0" with variable speed
- Accessory / Component Air Side Pressure Drops
 - Electric Heat, Hydronic Coils, Diffusers, Dampers, Airside Accessories . . .
- Total (Static) Pressure <u>Available</u> to Move the Air thru the Duct System
 - (This is different than Blower (Static) Pressure)
- Total Feet of Duct Work Resistance
 - Equivalent Feet of Fittings (Manual "D" / Appendix 3)
 - Straight Runs of Duct

- Available Static @ Air Handler = 0.60"
- Pressure Drops

Electric Heater 0.??" Supply Grill 0.03" per Manual "D" Return Grill 0.03" per Manual "D" Damper (Balancing) 0.03" per Manual "D" High Eff Filters 0.??" 0.??" => Totals = -0.??" Available To Deliver Air = 0.??"

DETERMINE AUX HEAT PRESSURE DROP

AIRFLOW PERFORMANCE CORRECTION FACTORS

HEATER KW	FLEMENTS	STATIC PRESSURE CORRECTION (in wc)						
	ELEMENTS	Sizes 002–005	Size 006					
0	0	+.02	+.03					
5	1	+ 01	+.02					
8, 10	2	0	0					
9, 15	3	02	03					
20	4	04	06					
18, 24, 30	6	06	10					

The airflow performance table was developed using fan coils with 10kW electric heaters (2 elements) in the units. For fan coils with heaters made up of a different number of elements, the external available static at a given CFM from the table may be corrected by adding or subtracting pressure. Use table for this correction.

Not all manufactures are like this, for some you do have pressure drop to add.

- Available Static @ Air Handler = 0.60"
- Pressure Drops

Electric Heater 0.00° Supply Grill 0.03° per Manual "D"Return Grill 0.03° per Manual "D"Damper (Balancing) 0.03° per Manual "D"High Eff FiltersNONE-0Totals = 0.09° =>

Available To Deliver Air =

DETERMINE FILTER PRESSURE DROP

PRESSURE DROP AT VARIOUS AIRFLOWS (CLEAN)

Airflow (CFM)	FACTORY SUPPLIED FURNACE/FAN COIL FILTER	EXPXXFIL0016	EXPXXFIL0020							
	Resistance (inches of water) (Clean filter)									
600	0.015	0.045	0.025							
800	0.020	0.070	0.045							
1000	0.030	0.110	0.075							
1200	0.035	0.150	0.100							
1400	0.045	0.210	0.130							
1600	0.055	0.250	0.160							
1800	0.062	—	0.200							
2000	0.070	_	0.220							
2200	_	_	_							

NOTE: When applying the EZ Flex, attention must be given to the duct and system design because all these components affect system static pressure. The EZ Flex has a higher static pressure drop than the typical factory supplied furnace and/or fan coil filter (as shown above), but is designed to ensure proper system efficiency and reliability when applied to a properly designed duct system and properly sized HVAC equipment.

Using Interpolation, @ 1085 CFM,

Pressure Drop across filter will be 0.13" w.g. ←

More Key Data

and Information!!

- Available Static @ Air Handler = 0.60"
- Pressure Drops

High Eff Filters

Electric Heater0.00"Supply Grill0.03"Per Manual "D"Return Grill0.03"per Manual "D"Democr (D)

Damper (Balancing) 0.03" per Manual "D"

Totals = <u>0.22"</u> =>

<mark>0.13"</mark>

Available To Deliver Air =

CORRECTLY USING THE DUCT CALCULATOR

- ✓ Required room CFM to satisfy the load
- ✓ Available Blower (Static) Pressure @ Design CFM
- ✓ Accessory / Component Air Side Pressure Drops
- ✓ Total (Static) Pressure <u>Available</u> to Move the Air thru the Duct System

Total Feet of Duct Work Resistance

a) Equivalent Feet of Fittings (Manual "D" / Appendix 3) plus (+)

b) Straight Runs of Duct

Available Static / 100 Equivalent Feet

Before We Pick Up the Duct Calculator!

MANUAL "D" APPENDIX 3 EQUIVALENT LENGTH EFFECTIVE LENGTH

CE

Group 1 — Continued Supply Air Fittings at the Air Handling Equipment

Reference Velocity = 900 FPM

Reference Friction Rate = 0.08 In.Wg. per 100 Feet

Vanes reduce resistance by 5/6 or 83%!!

Group 1 — Continued Supply Air Fittings at the Air Handling Equipment Reference Velocity = 900 FPM

Reference Friction Rate = 0.08 In.Wg. per 100 Feet

Mitered Inside Corner 1-K	EL = 85
------------------------------------	---------

Group 1 — Continued Supply Air Fittings at the Air Handling Equipment Reference Velocity = 900 FPM Reference Friction Rate = 0.08 In.Wg. per 100 Feet

EL = 85

R / W	EL
0.25	40
0.50	20
1.0	10
	R / W 0.25 0.50 1.0

Reference Friction Rate = 0.08 In.Wg. per 100 Feet

CE

Group 1 — Continued Supply Air Fittings at the Air Handling Equipment Reference Velocity = 900 FPM Reference Friction Rate = 0.08 In.Wg. per 100 Feet

Group 2 Branch Take-Off Fittings at the Supply Trunk Reference Velocity = 900 FPM Reference Friction Rate = 0.08 In.Wg. per 100 Feet

EL Va	alues	Nu	mber of Down Number of Do	n Stream Brar wn Stream Bi	nches to End ranches to a T	of Trunk Duct Trunk Reduce	t or F
Fitt	ing	0	1	2	3	4	5 or More
6	2-A	35	45	55	65	70	80
	2-B	20	30	35	40	45	50
Ø	2-C	65	65	65	65	70	80
	2-D	40	50	60	65	75	85
	2-E	25	30	35	40	45	50
	2-F	20	20	20	20	25	25
	2-G	65	65	65	70	80	90
	2-H	70	70	70	75	85	95
Note: If the tru	nk has a reduc	er — count dov	wn to the reduc	er; then begin	counting (again	n) after the redu	ucer

Group 2 — Continued Branch Take-Off Fittings at the Supply Trunk Reference Velocity = 900 FPM Reference Friction Rate = 0.08 In.Wg. per 100 Feet

EL Values		Number of Down Stream Branches to End of Trunk Duct or Number of Down Stream Branches to a Trunk Reducer							
Fitting		0	1	2	3	4	5 or More		
P	2-1	65	75	85	95	100	110		
A	2-J	50	60	65	70	75	80		
Ð	2-K	50	60	65	70	75	80		
\bigcirc	2-L	70	80	90	95	105	115		
	2-M	70	80	90	95	105	115		
Note: If the trunk has a reducer — count down to the reducer; then begin counting (again) after the reducer									

Group 2 — Continued Branch Take-Off Fittings at the Supply Trunk Reference Velocity = 900 FPM Reference Friction Rate = 0.08 In.Wg. per 100 Feet

EL Values		Number of Down Stream Branches to End of Trunk Duct or Number of Down Stream Branches to a Trunk Reducer							
Fitting		0	1	2	3	4	5 or More		
Ì	2-N	35	35	40	40	40	40		
J.	2-0	55	65	75	85	90	100		
	2-P	50	55	60	65	70	75		
	2-Q	10	10	15	20	20	25		

Note: If the trunk has a reducer — count down to the reducer; then begin counting (again) after the reducer
Appendix 3

Group 8 Elbows and Offsets

Reference Velocity = 900 FPM

Reference Friction Rate = 0.08 In.Wg. per 100 Feet

	Round and Oval Elbow EL Values							
	P	P P P D D P I				0		
⊢_□ 8-A R/D	Smooth	4 or 5 Piece	3 Piece	Smooth Mitered	Easy Bend	Hard Bend	3-Piece 45°	2-Piece 450
Mitered (R = 0)	-			75	4 Piece	4 Piece		15
0.75	20	30	35		25	30	10	
1.0	15	20	25	_	3 Piece	3 Piece		
1.5 or Larger	10	15	20	_	30	35		
\bigcap	For Smooth Radius Round Elbows — Angles (θ) Less Than 90° — Multiply EL by the Following Factor							
	20°	300	45°	60°	75°	110 ^o	130°	150 ^o
8-A — Continued	0.31	0.45	0.60	0.78	0.90	1.13	1.20	1.28

EL's	No	With		
H/L	Vanes	Vanes		
0.5	55	_		
1.0	330	55		
1.5	430	55		
2.0	470	55		

R/H	EL
Mitered (R=0)	250
0.25	100
0.50	20
1	20

ĈE

Appendix 3

Group 4 Supply Air Boot and Stack Head Fittings

Reference Velocity = 900 FPM

Reference Friction Rate = 0.08 In.Wg. per 100 Feet

EL = 80

Note How the Mitered Inside Corner Increases the EL

The equivalent lengths in this group apply when the flow in a secondary trunk duct is a substantial percentage of the flow in the upstream (primary) duct. Refer to Group 2 Branch Takeoff Fittings for information above the equivalent lengths that are associated with branch runouts.

CE

Appendix 3

A3-15

MANUAL "D" RECOMMENDED VELOCITIES

Recommended Velocities in FPM								
	Supply Ducts				Return Ducts			
	Recommended		Maximum		Recommended		Maximum	
	Rigid	Flex	Rigid	Flex	Rigid	Flex	Rigid	Flex
Main Plenum	700	600	900	700	600	600	700	700
Branch Ducts	600	600	900	700	400	400	700	700
Registers, Diffusers & Grills Size for		Throw 700		0	400		500	
Filter Grill (face velocity)	N/A			300		300		

The above velocities do not guaranty a quite system. Turbulence generated by un-insulated ductwork takeoffs, abrupt fittings and transitions as well as any object placed in the airstream can and will generate noise.

On the back of your Micrometal Duct Calculator Will have some of the most common fittings

_

SUMMARY EQUIVALENT LENGTH

Manual "D" Equivalent Length should be the highest (safety factor) vs actual design with standard duct sizes

Can be adjusted for actual design once

- Friction / 100 ft
- Velocities are known

Provides a quick and simplified method to assure CFM delivery (with a safety factor) to account for actual installation vs design variances.

<u>Requires use of balancing dampers</u> to balance airflow in less restrictive runs.

- Linear lengths =
- Elbow Equivalent Length = ____
- # Elbows (8-D H/W=1) =
- Total Equivalent Length of Elbows =
- Total Equivalent Length of Supply Duct =

- Linear lengths = 20 + 30 + 40 + 25 + 55 + 15 + 50 = 235
- Elbow Equivalent Length =
- # Elbows (8-D H/W=1) =
- Total Equivalent Length of Elbows =
- Total Equivalent Length of Supply Duct =

- Linear lengths = 20 + 30 + 40 + 25 + 55 + 15 + 50 = 235
- Elbow Equivalent Length = $\underline{80}$
- # Elbows (8-D H/W=1) = <u>6</u>
- Total Equivalent Length of Elbows =
- Total Equivalent Length of Supply Duct =

- Linear lengths = 20 + 30 + 40 + 25 + 55 + 15 + 50 = 235
- Elbow Equivalent Length = $\underline{80}$
- **# Elbows** (8-D H/W=1) = 6
- Total Equivalent Length of Elbows = <u>480</u>
- Total Equivalent Length of Supply Duct = 235 + 480 = 715

Total Equivalent Feet = _

Friction / 100 Ft =

Total (Static) Pressure Available = <u>0.60</u>"

Total Equivalent Feet = $\underline{715}$

Friction / 100 Ft = 0.60" / 715 ft x 100 = 0.08"

Total (Static) Pressure Available = <u>0.34</u>"

Total Equivalent Feet = $\underline{715}$

- Friction / 100 Ft = <u>0.08</u>"
- CFM = <u>1000</u>
- 1st) Set Friction/100 ft @ Desired CFM
- 2nd) Read Round or Rectangular Duct Size
- 3rd) Adjust Duct Size Up to Standard Size = 12X16

- Friction / 100 Ft = <u>0.04</u>"
- CFM = <u>1000</u>
- 1st) Set Friction/100 ft @ Desired CFM
- 2nd) Read Round or Rectangular Duct Size
- 3rd) Adjust Duct Size Up to Standard Size = 12X20

Only adding turning vanes to each elbow

- Linear lengths = 20 + 30 + 40 + 25 + 55 + 15 + 50 = 235
- Elbow Equivalent Length = add turning vanes 80 EL changes to 10 EL
- # Elbows (8-D goes to an 8-E H/W=1) = <u>6</u>
- Total Equivalent Length of Elbows = <u>480 EL goes to 60 EL</u>

• Total Equivalent Length of Supply Duct = <u>235 + 60</u> = Drops from <u>715 EL to 295 EL</u>

- Friction / 100 Ft = <u>0.20"</u>
- CFM = <u>1000</u>
- 1st) Set Friction/100 ft @ Desired CFM
- 2nd) Read Round or Rectangular Duct Size
- 3rd) Adjust Duct Size Up to Standard Size = 12X10

Total Equivalent Feet = 295Friction / 100 Ft = 0.34" / 295 ft x 100 = 0.11"

- Friction / 100 Ft = <u>0.11</u>"
- CFM = <u>1000</u>
- 1st) Set Friction/100 ft @ Desired CFM
- 2nd) Read Round or Rectangular Duct Size
- 3rd) Adjust Duct Size Up to Standard Size = 12X14

1st Determine Friction / 100ft Available

- Total (Static) Pressure Available = <u>0.50"</u>
- Total Equivalent Feet = <u>300ft</u>

• Friction / 100 Ft = <u>0.50" / 300 ft x 100 = 0.16"</u>

2nd Determine Duct Size

- Friction / 100 Ft = <u>0.16"</u>
- CFM = <u>1000</u>
- 1st) Set Friction/100 ft @ Desired CFM
- 2nd) Read Round or Rectangular Duct Size 12.6¢ / 10 x 13.8
- 3rd) Adjust Duct Size Up to Standard Size 146/10 x 14

CE

Set 1,000 CFM across from 0.167 Friction Loss
Read required duct size to ideally match
Round up to a nominal size!
12.6\u03c6 / 10 x 13.8

14¢ / 10 x 14

1st Determine Friction / 100ft Available

- Total (Static) Pressure Available = <u>0.38</u>"
- Total Equivalent Feet = <u>300ft</u>
- Friction / 100 Ft = <u>0.38" / 300 ft x 100 = 0.12"</u>

2nd Determine Duct Size

- Friction / 100 Ft = <u>0.12</u>"
- CFM = <u>1000</u>
- 1st) Set Friction/100 ft @ Desired CFM
- 2nd) Read Round or Rectangular Duct Size 13.2¢ / 10 x 15.2
- 3rd) Adjust Duct Size Up to Standard Size 14¢ / 10 x 16

CE

Set 1,000 CFM across from 0.12 Friction Loss
Read required duct size to ideally match
Round up to a nominal size!
13.2φ / 10 x 15.2
14φ / 10 x 16

1st Determine Friction / 100ft Available

- Total (Static) Pressure Available = <u>0.24</u>"
- Total Equivalent Feet = <u>300ft</u>
- Friction / 100 Ft = <u>0.24" / 300 ft x 100 = 0.08"</u>

2nd Determine Duct Size

- Friction / 100 Ft = <u>0.08</u>"
- CFM = <u>1000</u>
- 1st) Set Friction/100 ft @ Desired CFM
- 2nd) Read Round or Rectangular Duct Size 14.4 \$\u03c6 / 10 x 18.3
- 3rd) Adjust Duct Size Up to Standard Size $16 \phi / 10 x 20$

70 60 504540 35 30 25 201816 14 12

MICDOMETI DODDOD

Set 1,000 CFM across from 0.08 Friction Loss
Read required duct size to ideally match
Round up to a nominal size!

14.4 \ \ / 10 x 18.3

16 ¢ / 10 x 20

- Blower Static Available = <u>0.50</u>"
- less coil pressure drop = <u>0.17</u>"
- Available Static for Ductwork = <u>0.33</u>"
- Total Equivalent Feet = <u>300</u>
- Friction / 100 Ft = <u>0.33" / 300 ft x 100 = 0.11</u>"

- Friction / 100 Ft = **0.11**"
- CFM = <u>1000</u>
- 1st) Set Friction/100 ft @ Desired CFM
- 2nd) Read Round or Rectangular Duct Size 14
 - $14 \ensuremath{\,\phi}\xspace/$ 10 x 16

• 3rd) Adjust Duct Size Up to Standard Size

CE

Set 1,000 CFM across from 0.11 Friction Loss
Read required duct size to ideally match
Round up to a nominal size!

14 ¢ / 10 x 16

- Blower Static Available = <u>0.38</u>"
- less coil pressure drop = -0.17"
- Available Static for Ductwork = <u>0.21</u>"
- Total Equivalent Feet = <u>300</u>
- Friction / 100 Ft = $0.21^{"}/300 \text{ ft x } 100 = 0.07^{"}$

- Friction / 100 Ft = <u>0.07</u>"
- CFM = <u>1000</u>
- 1st) Set Friction/100 ft @ Desired CFM
- 2nd) Read Round or Rectangular Duct Size 15 \$\phi/10 x 19
- 3rd) Adjust Duct Size Up to Standard Size 16

15 φ / 10 x 19 16 φ / 10 x 20

CE

Set 1,000 CFM across from 0.07 Friction Loss
Read required duct size to ideally match
Round up to a nominal size!

15 φ / 10 x 19 16 φ / 10 x 20

- Blower Static Available = <u>0.24</u>"
- less coil pressure drop = -0.17"
- Available Static for Ductwork = <u>0.07</u>"
- Total Equivalent Feet = <u>300</u>
- Friction / 100 Ft = <u>0.07" / 300 ft x 100 = 0.02</u>"

- CFM = <u>1000</u>
- Manual "D" recommends that when the design static starts to go below 0.06"/100 ft, that either the blower speed be increased, or the air mover be changed to an air mover with a stronger blower!

SOME KEY OBSERVATIONS

As available static changed What Happen to the Duct Size?

As available static Increased, duct sizes went down As available static Decreased, duct sizes increased

> Adding Components/Accessories Reduces Available Static and Requires Larger Ducts (\$\$\$)

We saw the old way of doing duct sizing was done .1 per 100 equivalent feet

So imagine when you take a static pressure reading and it says .3" wc, that would equal 300 feet of duct.

And our goal is when we see a system above .5" wc, to look for opportunities where you can make improvements in the duct system to get the static pressure down.

Example; Total system static pressure .7" wc, our goal is .5"wc. We need to reduce this duct system by 200 feet to get the static pressure at .5" wc.

Galvanized metal duct system

Make sure your meter is set to display P1

Galvanized metal duct system

Make sure your meter is set to display P1

- While on a service call or PM draw a sketch of the duct system to help you determine the existing EL.
- You do not have to get fancy this is for you

GO TO MANUAL D AND GET EL'S FOR FITTINGS

Supply fittings

			_
Bull	H/W	EI	
Head No Vanes 1-O	0.50	120	D
	1.0	85	

Return fittings

EL Values	Number of Down Stream Branches to End of Trunk Duct or Number of Down Stream Branches to a Trunk Reducer					
Fitting	0	1	2	3	4	5 or More
6 2-A	35	45	55	65	70	80

On the back of your Micrometal Duct Calculator Will have some of the most common fittings

_

While on a service call or PM draw a sketch of the duct system to help you determine the existing EL.

You do not have to get fancy this is for you

Galvanized metal duct system

MAKE YOUR NOTES & START THE MATH

Now you do not need to run the numbers on all the supplies, pick the closest 2 and the furthest 2.

Actual and Equivalent Length (EL) Takeoff Summary Sheet										
	Supply Duct Runs				Return Duct Runs					
	# 1	# 5	# 6	# 9		# R-1	#	#	#	
Straight Length ^(A)	28'	5'	10'	33'	Straight Length ^(A)	5'				
Straight Length ^(A)	12'	18'	22'	15'	Straight Length ^(A)	10'				
Group ^(B) 1-O	120'	120'	120'	120'	Group ^(B) 6-H	15'				
Group ^(B) 2-A	35'	70'	65'	35'	Group ^(B) 8-D	65'				
Group ^(B) 4-G	80'	80'	80'	80'	Group ^(B) 5-I	30'				
Group ^(B)					Group ^(B)					
Totals	275'	293'	297'	283'	Totals	125'				

A) Enter the length of the Trunk & Branch runouts.

B) Enter "Fitting Group Number" from 1 to 13 from Manual "D" Appendix 3 and EL.

Now take the longest of your supply runs and the return and add them together for total system EL

297' + 125' = 422' EL duct system

AVAILABLE STATIC TO MOVE AIR

- Available Static @ Furnace = 0.50"
- Pressure Drops

Cooling Coil0.26"Supply Grill0.03"Return Grill0.03"Damper (Balancing)0.03"

High Eff Filter <u>NONE</u>

Totals = <u>0.35"</u> =>

Available To Deliver Air

and Design Ductwork

Remember the job we changed from a 14" coil to a 17" coil and we thought that fixed our issue?

-0.35"

.15"

changed from a 14" coil to a 17" coil and we thought that fixed our issue?

- Blower Static Available = 0.50"
- less pressure drops = -0.35"
- Available Static for Ductwork = 0.15"
- Total Equivalent Feet = **422**
- Friction / 100 Ft = 0.15" / 422 ft x 100 = 0.04"

This needs to be above 0.06" Per Manual D

WE MAKE SOME FITTING CHANGES

Runout #4 Runout #2 Runout #6 Runout #9 We changed our takeoffs from 2-A to 2-B. 4-G Boot Removed 6" round air-tight and replaced with 8" inch round air-tight and a 8X6 reducer. # 12 ft 18 ft t ង S 25 We changed our Bull Head Tee from 1-O 1-P Bull Head Tee 9 2-B Takeoff w/ Vanes 20 to 1-P just by adding turning vanes inside the box. t to 50 -Extended Plenum Furnace Galvanized metal duct system 6 6-H 8-D - easy bend ₽ 18 ft 4 ₽ ₽ 2 Ω |⊴ 2 10 feet 5 feet Runout #1 Runout #3 Runout #5 Runout #7 Runout #8 5-I 6 ft 6 ft 5 ft 6 ft 5 ft13 ft 10 ft 10 ft H/W=240 to 50 ft

MAKE ADJUSTMENTS TO YOUR NOTES & RE-DO THE MATH

Now you do not need to run the numbers on all the supplies, pick the closest 2 and the furthest 2.

Actual and Equivalent Length (EL) Takeoff Summary Sheet									
	Supply Duct Runs				Return Duct Runs				
	# 1	# 5	# 6	# 9		# R-1	#	#	#
Straight Length ^(A)	28'	5'	10'	33'	Straight Length ^(A)	5'			
Straight Length ^(A)	12'	18'	22'	15'	Straight Length ^(A)	10'			
Group ^(B) 1-P	20'	20'	20'	20'	Group ^(B) 6-H	15'			
Group ^(B) 2-B	20'	45'	40'	20'	Group ^(B) 8-D	65'			
Group ^(B) 4-G	80'	80'	80'	80'	Group ^(B) 5-I	30'			
Totals	160'	168'	172'	168'	Totals	125'			

A) Enter the length of the Trunk & Branch runouts.

B) Enter "Fitting Group Number" from 1 to 13 from Manual "D" Appendix 3 and EL.

Now take the longest of your supply runs and the return and add them together for total system EL

172' + 125' = 297' EL duct system

- Blower Static Available = 0.50"
- less pressure drops = -0.35"
- Available Static for Ductwork = 0.15"
- Total Equivalent Feet = **297**
- Friction / 100 Ft = <u>0.15" / 297 ft x 100 = 0.05</u>"

Remember the job we changed the from 14" coil to a 17" coil and we thought that fixed our issue?

This needs to be above 0.06" Per Manual D

CLOSING THOUGHTS

We hope this simplified course has helped answer some questions or may have given you a new way of thinking about solving an airflow concern. There is so much more to Duct design, and so many variables, please consult ACCA Manual D.

Not every situation can you just add more duct, a return or a supply, but also where they are added can affect airflow.

Sometimes using any one of the following strategies can help correct an airflow concern.

Change speed tap on blower motor Change the Evaporator Coil to a larger width and install a transition to reduce the pressure drop Change duct fittings to reduce EL Replace the existing duct system Worst case scenario you may have to change the furnace to the next larger blower, like for our last example.

You may have a situation where you must use multiple solutions.

And keep in mind the numbers we just covered in our examples are in a situation where the duct system is installed perfectly according to ACCA standards.

Of course, field conditions will always affect the true numbers.

CLOSING THOUGHTS

I know we do not like math or using Manual D.

But when addressing an airflow concern, and by doing the math you can make sure you are correcting the concern the first time. And not wasting any one's money with things that did not work.

Measure twice, cut once! Its cheaper.

Questions? Thank You

First visit cematraining.com and Login or Register for the site. Then scan this QR Code, file in the brief form and submit. Then click "Take this Course"

